| 研究生: |
賴仕峰 Lai, Shih-Feng |
|---|---|
| 論文名稱: |
一維空間之 Dirac-Klein-Gordon 方程 On the Dirac-Klein-Gordon Equations in one Space Dimension |
| 指導教授: |
方永富
Fang, Yung-fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | Dirac-Klein-Gordon 方程 |
| 外文關鍵詞: | Dirac-Klein-Gordon Equation |
| 相關次數: | 點閱:95 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
First, we obtain some solutions representations in Fourier transform. Next we demonstrate that a priori estimates of solutions for Dirac equation and for wave equation. Then we prove a local result for (0.1), taking advantage of the null form estimate, other estimates, and a fixed point argument. Finally we show the local and global results.
[B] J.Bourgain, Invariant Measures for NLS in Infinite Volume, Commun. Math.Phys. 210 (2000), 605-620.
[Ba] A.Bachelot, Global existence of large amplitude solutions for Dirac-Klein-Gordon systems in Minkowski space, Lecture Notes in Math. 1402 (1989), 99-113(Springer Berlin).
[Bo] N.Bournaveas, A new proof of global existence for the Dirac-Klein-Gordon equation in one space dimension, J.Funct. Anal. 173 (2000), 203-213.]
[C] J.Chadam, Global Solutions of the Cauchy Problem for the (Classical) Coupled Maxwell-Dirac Equations in one Space Dimension}, J. Funct. Anal. 13 (1973), 173-184.
[CG] J.Chadam and R.Glassey, On Certain Global Solutions of the Cauchy Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in one and three Space Dimensions}, Arch. Rational Mech. Anal. 54 (1974), 223-237.
[F1] Yung-fu Fang, Local Existence for Semilinear Wave Equations and Applications to Yang-Mills Equations},Ph.D dissertation (1996) (University of Maryland).
[F2] Yung-fu Fang, Existence and Uniqueness for Dirac-Klein-Gordon Equations in One Space Dimension (2002)(preprint)
[F3] Yung-fu Fang, A Direct Proof of Global Existence for the Dirac-Klein-Gordon Equations in One Space Dimension (2004) Taiwanese Journal of Math.
[FG] Yung-fu Fang and Manoussos Grillakis, Existence and Uniqueness for Boussinesq type Equations on a Circle}, Comm. PDE (1996), 1253-1277.
[G] V. Georgiev, Small amplitude solutions of the Maxwell-Dirac equations, Indiana Univ. Math. J. 40 (1991), 845-883.
[GS] R.Glassey and W. Strauss, Conservation laws for the classical Maxwell-Dirac and Klein-Gordon-Dirac equations}, J. Math. Phys. 20 (1979), 454-458
[KM] S. Klainerman and M.Machedon, Space-time estimates for null forms and the local existence theorem}, Comm. Pure Appl. Math. XLVI (1993), 1221-1268.
[KU] Sergej Kuksin, Infinite-Dimensional Symplectic Capacities and a Squeezing Theorem for Hamiltonian PDE's, Commun. Math. Phys 167 (1995), 531-552.
[S] E.M. Stein, Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press.
[Z] Y. Zheng, Reqularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations}, Commun. Math. Phys. 151 (1993), 67-87.