簡易檢索 / 詳目顯示

研究生: 陳品竹
Chen, Pin-Zhu
論文名稱: 酸性逆境下萵苣和番茄之生理和生化反應
Physiological and Biochemical Responses to Acid Stress in Lactuca sativa and Solanum lycopersicum
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 酸性逆境番茄萵苣抗氧化酵素次世代定序
外文關鍵詞: acid stress, Solanum lycopersicum, Lactuca sativa, antioxidants, NGS
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 英文延伸摘要 III 致謝 IX 目錄 X 表目錄 XI 圖目錄 XII 壹、前言 1 一、土壤酸化對植物的影響 1 二、植物應對非生物逆境之生理反應 2 三、植物應對非生物逆境之防禦系統 3 四、非生物逆境下生物刺激劑對植物之影響 4 五、研究目的 5 貳、材料與方法 6 一、植物材料製備 6 二、植物酸性逆境測試 6 三、植物生理指標測定 7 四、基因表現量測定 9 參、研究結果 11 一、篩選具酸性敏感性之萵苣和番茄品系 11 二、不同培養液對酸性逆境下的番茄和萵苣有不同結果 11 三、葉綠素含量、抗氧化酵素活性和MDA含量分析 12 四、酸性逆境調控之萵苣基因表現影響 12 肆、討論 14 一、不同品系對酸性逆境反應之差異 14 二、不同酸性培養液對番茄和萵苣之影響 15 三、酸性逆境引起之萵苣葉綠素含量和抗氧化酵素活性變化 16 四、酸性逆境調控之萵苣基因表現 17 五、結論 19 參考文獻 21 結果圖表 26 附錄 40

    Adachi, S., Minamisawa, K., Okushima, Y., Inagaki, S., Yoshiyama, K., Kondou, Y., Kaminuma, E., Kawashima, M., Toyoda, T., & Matsui, M. (2011). Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proceedings of the National Academy of Sciences, 108(24), 10004-10009.
    Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388.
    Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in plant science, 8, 1767.
    Bolan, N., Hedley, M., & White, R. (1991). Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant and soil, 134, 53-63.
    Borhannuddin Bhuyan, M., Hasanuzzaman, M., Nahar, K., Mahmud, J. A., Parvin, K., Bhuiyan, T. F., & Fujita, M. (2019). Plants behavior under soil acidity stress: Insight into morphophysiological, biochemical, and molecular responses. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 35-82.
    Chen, J., Wang, W.-H., Liu, T.-W., Wu, F.-H., & Zheng, H.-L. (2013). Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant physiology and biochemistry, 64, 41-51.
    Chen, W., Li, Z.-W., & Shen, X. (2012). Influence of soil acidification on soil microorganisms in pear orchards. Communications in soil science and plant analysis, 43(13), 1833-1846.
    Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in plant science, 8, 2202.
    Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in plant science, 5, 448.
    Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14.
    Endo, M., Nakayama, S., Umeda‐Hara, C., Ohtsuki, N., Saika, H., Umeda, M., & Toki, S. (2012). CDKB2 is involved in mitosis and DNA damage response in rice. The Plant Journal, 69(6), 967-977.
    Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of plant nutrition and soil science, 172(2), 237-244.
    Ertani, A., Schiavon, M., Muscolo, A., & Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and soil, 364, 145-158.
    García, A. L., Franco, J. A., Nicolás, N., & Vicente, R. M. (2006). Influence of amino acids in the hydroponic medium on the growth of tomato plants. Journal of plant nutrition, 29(12), 2093-2104.
    Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2012). Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biological Trace Element Research, 149, 248-261.
    Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhuyan, M. B., Oku, H., & Fujita, M. (2018). Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant physiology and biochemistry, 126, 173-186.
    Hong, J. H., Savina, M., Du, J., Devendran, A., Ramakanth, K. K., Tian, X., Sim, W. S., Mironova, V. V., & Xu, J. (2017). A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell, 170(1), 102-113. e114.
    Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Kobayashi, Y., Ikka, T., Hirayama, T., Shinozaki, K., & Kobayashi, M. (2007). Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences, 104(23), 9900-9905.
    Kaye, Y., Golani, Y., Singer, Y., Leshem, Y., Cohen, G., Ercetin, M., Gillaspy, G., & Levine, A. (2011). Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant physiology, 157(1), 229-241.
    Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., & Li, D. (2021). Regulation mechanisms of carbon dots in the development of lettuce and tomato. ACS Sustainable Chemistry & Engineering, 9(2), 944-953.
    Koukalová, B. e., Kovarˇík, A., Fajkus, J. í., & Sˇiroký, J. í. (1997). Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS letters, 414(2), 289-292.
    Lager, I., Andréasson, O., Dunbar, T. L., Andreasson, E., Escobar, M. A., & Rasmusson, A. G. (2010). Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. Plant, Cell & Environment, 33(9), 1513-1528.
    Lin, W. H., Ye, R., Ma, H., Xu, Z. H., & Xue, H. W. (2004). DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell research, 14(1), 34-45.
    Liu, P., Wu, X., Gong, B., Lü, G., Li, J., & Gao, H. (2022). Review of the mechanisms by which transcription factors and exogenous substances regulate ROS metabolism under abiotic stress. Antioxidants, 11(11), 2106.
    Long, A., Zhang, J., Yang, L.-T., Ye, X., Lai, N.-W., Tan, L.-L., Lin, D., & Chen, L.-S. (2017). Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Frontiers in plant science, 8, 185.
    Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 182, 124-133.
    Maslenkova, L. T., Zanev, Y., & Popova, L. P. (1989). Effect of abscisic acid on the photosynthetic oxygen evolution in barley chloroplasts. Photosynthesis research, 21, 45-50.
    Nazmi, G., YÜKSEL, E. A., & TOPDEMİR, A. (2016). Acidity effect in pollen germination and tube length of Prunus Amygdalus Batsch and Prunus domestica L. Journal of Applied Biological Sciences, 10(2), 41-45.
    Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K., & Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites, 10(12), 505.
    Ning, S. B., Song, Y. C., & Damme, P. v. (2002). Characterization of the early stages of programmed cell death in maize root cells by using comet assay and the combination of cell electrophoresis with annexin binding. Electrophoresis, 23(13), 2096-2102.
    Osaki, M., Watanabe, T., & Tadano, T. (1997). Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Science and Plant Nutrition, 43(3), 551-563.
    Pareek, A., Mishra, D., Rathi, D., Verma, J. K., Chakraborty, S., & Chakraborty, N. (2021). The small heat shock proteins, chaperonin 10, in plants: an evolutionary view and emerging functional diversity. Environmental and Experimental Botany, 182, 104323.
    Penn, C. J., & Camberato, J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120.
    Popko, J., Hänsch, R., Mendel, R. R., Polle, A., & Teichmann, T. (2010). The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant biology, 12(2), 242-258.
    Qiao, F., Zhang, X.-M., Liu, X., Chen, J., Hu, W.-J., Liu, T.-W., Liu, J.-Y., Zhu, C.-Q., Ghoto, K., & Zhu, X.-Y. (2018). Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. Plant physiology and biochemistry, 127, 238-247.
    Romero, A., Vega, D., & Correa, O. (2014). Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology, 82, 38-43.
    Ronen, E. (2016). Micro-elements in agriculture. Practical Hydroponics and Greenhouses(164), 35-44.
    Rouphael, Y., Cardarelli, M., Bonini, P., & Colla, G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Frontiers in plant science, 8, 131.
    Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in plant science, 9, 1655.
    Saenen, E., Horemans, N., Vanhoudt, N., Vandenhove, H., Biermans, G., Van Hees, M., Wannijn, J., Vangronsveld, J., & Cuypers, A. (2014). The pH strongly influences the uranium-induced effects on the photosynthetic apparatus of Arabidopsis thaliana plants. Plant physiology and biochemistry, 82, 254-261.
    Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., & Kobayashi, M. (2009). STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant physiology, 150(1), 281-294.
    Sestili, F., Rouphael, Y., Cardarelli, M., Pucci, A., Bonini, P., Canaguier, R., & Colla, G. (2018). Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Frontiers in plant science, 9, 1233.
    Shavrukov, Y., & Hirai, Y. (2016). Good and bad protons: genetic aspects of acidity stress responses in plants. Journal of experimental botany, 67(1), 15-30.
    SHI, Q.-h., ZHU, Z.-j., Juan, L., & QIAN, Q.-q. (2006). Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots. Agricultural Sciences in China, 5(10), 767-772.
    Siecińska, J., & Nosalewicz, A. (2017). Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A review. Reviews of Environmental Contamination and Toxicology Volume 243, 1-26.
    Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T. (2015). Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions, 28(10), 1073-1081.
    Tang, C., Weligama, C., & Sale, P. (2013). Subsurface soil acidification in farming systems: its possible causes and management options. Molecular environmental soil science, 389-412.
    Tian, D., & Niu, S. (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10(2), 024019.
    Tsukagoshi, H. (2012). Defective root growth triggered by oxidative stress is controlled through the expression of cell cycle-related genes. Plant Science, 197, 30-39.
    Von Uexküll, H., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and soil, 171, 1-15.
    Wang, C.-T., Ru, J.-N., Liu, Y.-W., Yang, J.-F., Li, M., Xu, Z.-S., & Fu, J.-D. (2018). The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. International journal of molecular sciences, 19(9), 2580.
    Wu, L., Zhang, Z., Zhang, H., Wang, X.-C., & Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant physiology, 148(4), 1953-1963.
    Xu, L., & Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Frontiers in plant science, 9, 1567.
    Yang, M., Huang, S., Fang, S., & Huang, X. (2011). Response of seedling growth of four Eucalyptus clones to acid and aluminium stress. Plant Nutrition and Fertilizer Science, 17(1), 195-201.
    Yang, Z., Chi, X., Guo, F., Jin, X., Luo, H., Hawar, A., Chen, Y., Feng, K., Wang, B., & Qi, J. (2020). SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of plant physiology, 246, 153142.
    ZHANG, C.-P., Meng, P., LI, J.-Z., & WAN, X.-C. (2014). Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings. Chinese Journal of Plant Ecology, 38(12), 1345.
    Zhang, Y.-K., Zhu, D.-F., Zhang, Y.-P., Chen, H.-Z., Xiang, J., & Lin, X.-Q. (2015). Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings. PloS one, 10(2), e0116971.
    Zhao, X. Q., Guo, S. W., Shinmachi, F., Sunairi, M., Noguchi, A., Hasegawa, I., & Shen, R. F. (2013). Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference. Annals of Botany, 111(1), 69-77.
    王斐能. (2006). 北部地區農田土壤肥力概況. 桃園區農業改良場研究彙報, 59, 47-56.

    無法下載圖示 校內:2028-08-22公開
    校外:2028-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE