簡易檢索 / 詳目顯示

研究生: 簡永順
Chien, Yung-Shun
論文名稱: 釕酸鍶/鈷鐵氧體系統複合結構中的應力調制耦合研究
Study of strain-mediated couplings in SrRuO3-CoFe2O4 nanocomposite
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 鈷鐵氧體釕酸鍶奈米複合材料應變耦合拉曼光譜
外文關鍵詞: CoFe2O4, SrRuO3, nano-composites, strain couplings, Raman spectroscopy.
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,探討鈷鐵氧體(CoFe2O4;CFO)與釕酸鍶(SrRuO3;SRO)奈米複合材料間的應變耦合關係。其中,磁致伸縮(magnetostriction)型感測器中,具有亞鐵磁性與磁晶異向性的鈷鐵氧體為一個廣泛討論的材料,而有良好的導電性和導熱係數的釕酸鍶(SrRuO3;SRO),也具有光致伸縮(photostriction)的特性。當鈷鐵氧體和釕酸鍶成長在一起時,易形成奈米柱狀的結構。本研究擬利用拉曼光譜儀(Raman Spectroscopy),量測複合結構材料中釕酸鍶-鈷鐵氧體於外加磁場的過程中,由於鈷鐵氧體的磁致伸縮性質,而造成鈷鐵氧體奈米晶柱(pillars)的晶體形變,進而影響釕酸鍶基材(matrix)的結構變化。並透過變溫拉曼光譜的量測分別觀察在釕酸鍶和鈷鐵氧體的居里溫度附近,譜線相對應的變化。最後利用磁力顯微鏡(MFM),進一步探討釕酸鍶基材的光致伸縮性質,影響鈷鐵氧體奈米晶柱的磁矩排列。

    In this study, strain couplings in the SrRuO3 and CoFe2O4 nano-composites were investigated. CoFe2O4 (CFO), which has ferrimagnetism and magnetic anisotropy property, is widely discussed for the application of the magnetostriction-based sensors, while SrRuO3(SRO), which has good electrical and thermal conductivities, is also known for its photostrictive property. When CoFe2O4 and SrRuO3 are synthesized simultaneously, it is easy to form nanopillars structures. In this study, I used Raman spectroscopy to investigate the distortions of SrRuO3-CoFe2O4 nano-composites under external magnetic fields. The crystal structures of SrRuO3 matrix are affected by the deformation of the CoFe2O4 pillars through the magnetostrictive couplings. The variations of Raman phonons of the nano-composites near the Curie temperatures (Tc) of SrRuO3 and CoFe2O4 were also studied by temperature-dependent Raman measurements. Finally, under the light illumination, the reorientation of magnetic moments in CoFe2O4 nanopillars arising from the photostrictive properties of SrRuO3 were demonstrated by magnetic force microscopy (MFM).

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 磁性原理與文獻回顧 3 2.1 磁性材料 3 2.1.1物質磁性簡介 3 2.1.2亞鐵磁性(Ferrimagnetism) 5 2.1.3鐵氧磁體的性質 5 2.2鈷鐵氧體磁致伸縮特性於拉曼散射研究近況 9 2.3磁致伸縮(Magnetostriction)原理 19 2.4鈷鐵氧體基本性質 21 2.5釕酸鍶基本性質 23 第三章 實驗原理與方法 26 3.1拉曼光譜原理 26 3.1.1拉曼散射機制 26 3.1.2拉曼散射的古典波動模型 28 3.1.3微拉曼(Micro Raman)散射系統介紹 29 3.1.4實驗流程 31 3.2掃描式探針顯微術(Scan Probe Microscopy) 33 3.2.1掃描式探針顯微鏡的原理與架構 33 3.2.2原子力顯微鏡之系統架構 34 3.2.3原子力顯微鏡之成像原理 36 3.3磁力顯微鏡(MFM) 39 第四章 結果與討論 44 4.1受應力調變結構的拉曼光譜 45 4.1.1鈷鐵氧體(CoFe2O4;CFO)拉曼振動模態 45 4.1.2釕酸鍶(SrRuO3;SRO)拉曼振動模態 48 4.1.3複合結構材料系統的振動模式討論 52 4.1.4磁場調變晶格應力拉曼譜線 60 4.2複合結構材料系統隨溫度的相變 74 4.3光致伸縮對奈米晶柱的影響 89 第五章 結論 91 參考文獻 93

    1.Schlom, D. G.; Chen, L. Q.; Pan, X. Q.; Schmehl, A.; Zurbuchen, M. A., “A Thin Film Approach to Engineering Functionality into Oxides” , J. Am. Ceram. Soc., 91, 2429-2454, (2008).
    2.Martin, L. W.; Chu, Y. H.; Ramesh, R.; “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films” , Mater. Sci. Eng. R, 68, 89-133, (2010).
    3.MacManus-Driscoll, J. L., “Thin Films: Self-Assembled Heteroepitaxial Oxide Nanocomposite Thin Film Structures: Designing Interface-Induced Functionality in Electronic Materials” , Adv. Funct. Mater., 20, 2035-2045, (2010).
    4.Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G.; “Multiferroic magnetoelectric composites : Historical perspective, status , and future directions” , J. Appl. Phys., 103, 031101, (2008).
    5.Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O. I.; Verbeeck, J.; Van Tendeloo, G.; Mucksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.; “ Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films”, Nature Mater., 2, 247-252, (2003).
    6.Zheng, H., Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F.; Viehland, D.; Jia, Y.; Schlom, D. G.; Wuttig, M.; Roytburd, A. L., Ramesh, R.; “Multiferroic BaTiO3-CoFe2O4 Nanostructures” , Science, 303, 661-663, (2004).
    7.Dix, N.; Muralidharan, R.; Rebled, J. M.; Estrsde, S.; Peiro, F.; Varela, M.; Fontcuberta, J.; Sanchez, F. ; “Selectable Spontaneous Polarization Direction and Magnetic Anisotropy in BiFeO3-CoFe2O4 Epitaxial Nanostructures”, ACS Nano, 4, 4955-4961, (2010).
    8.Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S. Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; Schlom, D. G.; Suzuki, Y.; Ramesh, R.; “Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures”, Nano Lett., 5, 1793-1796, (2005).
    9.Zavaliche, F.; Zhao, T.; Zheng, H.; Straub, F.; Cruz, M. P.; Yang, P. L.; Hao, D.; Ramesh, R.; “Electrically Assisted Magnetic Recording in Multiferroic Nanostructures”, Nano Lett., 7, 1586-1590, (2007).
    10.Chen, A.P.; Bi, Z. X.; Tsai, C. F.; Lee, J.; Su, Q.; Zhang, X. H.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y.; “Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films”, Adv. Funct. Mater., 21, 2423-2429, (2011).
    11.姜政熙, “鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電耦合特性”,成功大學,碩士論文,(2008).
    12.宛德福, “磁性物理學”緒論,第一章 電子工業出版社 (1985).
    13.George Economos, “Magnetic Ceramics : I ,General Method of Magnetic Ferrite Preparation” Journal of the American Ceramic, Society 38, p.241~244, (1955).
    14.黃忠良 譯, “磁性陶瓷”第三章 復漢出版社 (1992).
    15.Richard A. Eppler, “Nickel Spinels’’, Ceramic Bulletin, 61, p.847~850, (1982).
    16.張煦、李學養 譯, “磁性物理學”, 第五章 聯經出版社 (1982).
    17.L. Gracia, A. Beltrán, J. Andrés, R. Franco, and J. M. Recio, “Quantum-mechanical simulation of MgAl2O4 under high pressure” , Phy. Rev. B 66, 224114, (2002).
    18.O. Chaix-Pluchery, C. Cochard, P. Jadhav, J. Kreisel,“Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering”, Appl. Phys. Lett. , 99, 072901, (2011).
    19.H. Zheng, J. Wang, S. E. Lo, Z. Ma, L. Mohaddes-Ardabili, T. Zhao,L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y.Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO3-CoFe2O4 Nanostructures” , Science, 303, 661, (2004).
    20.黃彥欽, “混合相磊晶鐵酸鉍薄膜的相變化”, 成功大學, 碩士論文, (2010).
    21.Y. Y. Liao, Y. W. Li, Z. G. Hu, and J. H. Chu, “Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition”, Applied Physics Letters, 100, 071905, (2012).
    22.Chul Sung Kim, Seung Wha Lee, Seung lel Park, Jae Yun Park and Yung Jei Oh, “Atomic migration in Ni-Co ferrite”, Journal of Applied Physics, 79, 5428, (1996).
    23.R. Lawrence Comstock, “Introduction to Magnetism and Magnetic Recording”, p.181~182, (1999).
    24.T Yu et al. “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study”, Journal of Physics: Condensed Matter, 14, L613-L618, (2002).
    25.Qi -C. Sun et al. “Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles”, American Chemical Society Nano, 6, 4876-4883, (2012).
    26.韓俊德 譯, 磁性體手冊, 北京:冶金工業出版社, (1985).
    27.G. Herranz et al. “Domain structure of epitaxial SrRuO3 thin film”, Physical Review B, 71, 174411, (2005).
    28.M. N. Iliev et al. “Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition”, Physical Review B, 59,364, (1999).
    29.Gertjan Koster et al. “Structure, physical properties, and applications of SrRuO3 thin films”, Reviews of Modern Physics, 84, 253, (2012).
    30.R. Palai et al. “Observation of spin-glass-like behavior in SrRuO3 epitaxial thin films”, Physical Review B, 79, 104413, (2009).
    31.Kyoung Jin Choi et al. “Phase –Transition Temperatures of Strained Single-Crystal SrRuO3 Thin Films”, Advanced Materials, 22, 759-762, (2010).
    32.汪建民, 材料分析, 中國材料科學學會, (1998).
    33.John R. Ferrara, INTRODUCTORY RAMAN SPECTROSCOPY.
    34.陳力俊, “材料電子顯微鏡學”,行政院國家科學委員會精密儀器發展中心, (2003).
    35.Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH (1996).
    36.王洸富, “屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文,(2010).
    37.郭政宜, 林茱瑩, 吳仲卿, “磁力探針顯微術簡介及其應用”, 奈米通訊, 第十五卷, 第四期, (2008).
    38.P.Chandramohan et al. “Cation distribution and particle size effect on Raman spectrum of CoFe2O4”, Journal of solid state Chemistry, 184, 89-96, (2011).
    39.J. Larry Verble, “Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite”, Physical Review B, 9, 5236, (1974).
    40.Renata Bujakiewicz-Koronska et al.“Low Temperature Measurements by Infrared Spectroscopy in CoFe2O4”, Central European Journal of Physics, 1-9, (2008).
    41.Haimei Zheng et al. “Heteroepitaxially enhanced magnetic anisotropy in BaTiO3-CoFe2O4 nanostructures”, Applied Physics Letters, 90, 113113, (2007).
    42.Y. X. Zheng et al.“Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4”, Journal of Applied Physics, 110, 043908, (2011).
    43.V. G. Ivanov et al. “Short-range B-site ordering in the inverse spinel ferrite NiFe2O4”, Physical Review B, 82, 024104, (2010).
    44.Ce-Wen Nan et al.“Magnetic-Field-Induced Electric Polarization in Multiferroic Nanostructures”, Physical Review Letter, 94, 197203, (2005).
    45.P. D. Thang et al. “Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition”, Journal of Magnetism and Magnetic Materials, 310, 2621-2623, (2007).
    46.ZI ZhenFa et al. “Anomalous behavior of magnetic properties in CoFe2O4 ferrite nanoparticles”, Scientia Sinica-Physica, Mechanica & Astronomica, 42, 242-248, (2012).
    47.G. A. Sawatzky et al. “ Mössbauer Study of Several Ferrimagnetic Spinels”, Physical Review, 187, 747,(1969).
    48.E. Granda et al. “Magnetic ordering effects in the Raman spectra of La1-xMn1-xO3”, Physical Review B, 60, 11879, (1999).
    49.Gertjan Koster et al. “Structure, physical properties, and applications of SrRuO3 thin films”, Review of Modern Physics , 84, 253 (2012).
    50.M. Woerner et al. “Ultrafast structural dynamics of perovskite superlattices”, Applied Physics A, 96, 83-90, (2009).

    下載圖示 校內:2014-08-27公開
    校外:2014-08-27公開
    QR CODE