研究生: |
簡永順 Chien, Yung-Shun |
---|---|
論文名稱: |
釕酸鍶/鈷鐵氧體系統複合結構中的應力調制耦合研究 Study of strain-mediated couplings in SrRuO3-CoFe2O4 nanocomposite |
指導教授: |
陳宜君
Chen, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 鈷鐵氧體 、釕酸鍶 、奈米複合材料 、應變耦合 、拉曼光譜 |
外文關鍵詞: | CoFe2O4, SrRuO3, nano-composites, strain couplings, Raman spectroscopy. |
相關次數: | 點閱:130 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,探討鈷鐵氧體(CoFe2O4;CFO)與釕酸鍶(SrRuO3;SRO)奈米複合材料間的應變耦合關係。其中,磁致伸縮(magnetostriction)型感測器中,具有亞鐵磁性與磁晶異向性的鈷鐵氧體為一個廣泛討論的材料,而有良好的導電性和導熱係數的釕酸鍶(SrRuO3;SRO),也具有光致伸縮(photostriction)的特性。當鈷鐵氧體和釕酸鍶成長在一起時,易形成奈米柱狀的結構。本研究擬利用拉曼光譜儀(Raman Spectroscopy),量測複合結構材料中釕酸鍶-鈷鐵氧體於外加磁場的過程中,由於鈷鐵氧體的磁致伸縮性質,而造成鈷鐵氧體奈米晶柱(pillars)的晶體形變,進而影響釕酸鍶基材(matrix)的結構變化。並透過變溫拉曼光譜的量測分別觀察在釕酸鍶和鈷鐵氧體的居里溫度附近,譜線相對應的變化。最後利用磁力顯微鏡(MFM),進一步探討釕酸鍶基材的光致伸縮性質,影響鈷鐵氧體奈米晶柱的磁矩排列。
In this study, strain couplings in the SrRuO3 and CoFe2O4 nano-composites were investigated. CoFe2O4 (CFO), which has ferrimagnetism and magnetic anisotropy property, is widely discussed for the application of the magnetostriction-based sensors, while SrRuO3(SRO), which has good electrical and thermal conductivities, is also known for its photostrictive property. When CoFe2O4 and SrRuO3 are synthesized simultaneously, it is easy to form nanopillars structures. In this study, I used Raman spectroscopy to investigate the distortions of SrRuO3-CoFe2O4 nano-composites under external magnetic fields. The crystal structures of SrRuO3 matrix are affected by the deformation of the CoFe2O4 pillars through the magnetostrictive couplings. The variations of Raman phonons of the nano-composites near the Curie temperatures (Tc) of SrRuO3 and CoFe2O4 were also studied by temperature-dependent Raman measurements. Finally, under the light illumination, the reorientation of magnetic moments in CoFe2O4 nanopillars arising from the photostrictive properties of SrRuO3 were demonstrated by magnetic force microscopy (MFM).
1.Schlom, D. G.; Chen, L. Q.; Pan, X. Q.; Schmehl, A.; Zurbuchen, M. A., “A Thin Film Approach to Engineering Functionality into Oxides” , J. Am. Ceram. Soc., 91, 2429-2454, (2008).
2.Martin, L. W.; Chu, Y. H.; Ramesh, R.; “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films” , Mater. Sci. Eng. R, 68, 89-133, (2010).
3.MacManus-Driscoll, J. L., “Thin Films: Self-Assembled Heteroepitaxial Oxide Nanocomposite Thin Film Structures: Designing Interface-Induced Functionality in Electronic Materials” , Adv. Funct. Mater., 20, 2035-2045, (2010).
4.Nan, C. W.; Bichurin, M. I.; Dong, S. X.; Viehland, D.; Srinivasan, G.; “Multiferroic magnetoelectric composites : Historical perspective, status , and future directions” , J. Appl. Phys., 103, 031101, (2008).
5.Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O. I.; Verbeeck, J.; Van Tendeloo, G.; Mucksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.; “ Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films”, Nature Mater., 2, 247-252, (2003).
6.Zheng, H., Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F.; Viehland, D.; Jia, Y.; Schlom, D. G.; Wuttig, M.; Roytburd, A. L., Ramesh, R.; “Multiferroic BaTiO3-CoFe2O4 Nanostructures” , Science, 303, 661-663, (2004).
7.Dix, N.; Muralidharan, R.; Rebled, J. M.; Estrsde, S.; Peiro, F.; Varela, M.; Fontcuberta, J.; Sanchez, F. ; “Selectable Spontaneous Polarization Direction and Magnetic Anisotropy in BiFeO3-CoFe2O4 Epitaxial Nanostructures”, ACS Nano, 4, 4955-4961, (2010).
8.Zavaliche, F.; Zheng, H.; Mohaddes-Ardabili, L.; Yang, S. Y.; Zhan, Q.; Shafer, P.; Reilly, E.; Chopdekar, R.; Jia, Y.; Wright, P.; Schlom, D. G.; Suzuki, Y.; Ramesh, R.; “Electric Field-Induced Magnetization Switching in Epitaxial Columnar Nanostructures”, Nano Lett., 5, 1793-1796, (2005).
9.Zavaliche, F.; Zhao, T.; Zheng, H.; Straub, F.; Cruz, M. P.; Yang, P. L.; Hao, D.; Ramesh, R.; “Electrically Assisted Magnetic Recording in Multiferroic Nanostructures”, Nano Lett., 7, 1586-1590, (2007).
10.Chen, A.P.; Bi, Z. X.; Tsai, C. F.; Lee, J.; Su, Q.; Zhang, X. H.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y.; “Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films”, Adv. Funct. Mater., 21, 2423-2429, (2011).
11.姜政熙, “鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電耦合特性”,成功大學,碩士論文,(2008).
12.宛德福, “磁性物理學”緒論,第一章 電子工業出版社 (1985).
13.George Economos, “Magnetic Ceramics : I ,General Method of Magnetic Ferrite Preparation” Journal of the American Ceramic, Society 38, p.241~244, (1955).
14.黃忠良 譯, “磁性陶瓷”第三章 復漢出版社 (1992).
15.Richard A. Eppler, “Nickel Spinels’’, Ceramic Bulletin, 61, p.847~850, (1982).
16.張煦、李學養 譯, “磁性物理學”, 第五章 聯經出版社 (1982).
17.L. Gracia, A. Beltrán, J. Andrés, R. Franco, and J. M. Recio, “Quantum-mechanical simulation of MgAl2O4 under high pressure” , Phy. Rev. B 66, 224114, (2002).
18.O. Chaix-Pluchery, C. Cochard, P. Jadhav, J. Kreisel,“Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering”, Appl. Phys. Lett. , 99, 072901, (2011).
19.H. Zheng, J. Wang, S. E. Lo, Z. Ma, L. Mohaddes-Ardabili, T. Zhao,L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y.Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO3-CoFe2O4 Nanostructures” , Science, 303, 661, (2004).
20.黃彥欽, “混合相磊晶鐵酸鉍薄膜的相變化”, 成功大學, 碩士論文, (2010).
21.Y. Y. Liao, Y. W. Li, Z. G. Hu, and J. H. Chu, “Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition”, Applied Physics Letters, 100, 071905, (2012).
22.Chul Sung Kim, Seung Wha Lee, Seung lel Park, Jae Yun Park and Yung Jei Oh, “Atomic migration in Ni-Co ferrite”, Journal of Applied Physics, 79, 5428, (1996).
23.R. Lawrence Comstock, “Introduction to Magnetism and Magnetic Recording”, p.181~182, (1999).
24.T Yu et al. “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study”, Journal of Physics: Condensed Matter, 14, L613-L618, (2002).
25.Qi -C. Sun et al. “Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles”, American Chemical Society Nano, 6, 4876-4883, (2012).
26.韓俊德 譯, 磁性體手冊, 北京:冶金工業出版社, (1985).
27.G. Herranz et al. “Domain structure of epitaxial SrRuO3 thin film”, Physical Review B, 71, 174411, (2005).
28.M. N. Iliev et al. “Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition”, Physical Review B, 59,364, (1999).
29.Gertjan Koster et al. “Structure, physical properties, and applications of SrRuO3 thin films”, Reviews of Modern Physics, 84, 253, (2012).
30.R. Palai et al. “Observation of spin-glass-like behavior in SrRuO3 epitaxial thin films”, Physical Review B, 79, 104413, (2009).
31.Kyoung Jin Choi et al. “Phase –Transition Temperatures of Strained Single-Crystal SrRuO3 Thin Films”, Advanced Materials, 22, 759-762, (2010).
32.汪建民, 材料分析, 中國材料科學學會, (1998).
33.John R. Ferrara, INTRODUCTORY RAMAN SPECTROSCOPY.
34.陳力俊, “材料電子顯微鏡學”,行政院國家科學委員會精密儀器發展中心, (2003).
35.Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH (1996).
36.王洸富, “屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文,(2010).
37.郭政宜, 林茱瑩, 吳仲卿, “磁力探針顯微術簡介及其應用”, 奈米通訊, 第十五卷, 第四期, (2008).
38.P.Chandramohan et al. “Cation distribution and particle size effect on Raman spectrum of CoFe2O4”, Journal of solid state Chemistry, 184, 89-96, (2011).
39.J. Larry Verble, “Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite”, Physical Review B, 9, 5236, (1974).
40.Renata Bujakiewicz-Koronska et al.“Low Temperature Measurements by Infrared Spectroscopy in CoFe2O4”, Central European Journal of Physics, 1-9, (2008).
41.Haimei Zheng et al. “Heteroepitaxially enhanced magnetic anisotropy in BaTiO3-CoFe2O4 nanostructures”, Applied Physics Letters, 90, 113113, (2007).
42.Y. X. Zheng et al.“Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4”, Journal of Applied Physics, 110, 043908, (2011).
43.V. G. Ivanov et al. “Short-range B-site ordering in the inverse spinel ferrite NiFe2O4”, Physical Review B, 82, 024104, (2010).
44.Ce-Wen Nan et al.“Magnetic-Field-Induced Electric Polarization in Multiferroic Nanostructures”, Physical Review Letter, 94, 197203, (2005).
45.P. D. Thang et al. “Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition”, Journal of Magnetism and Magnetic Materials, 310, 2621-2623, (2007).
46.ZI ZhenFa et al. “Anomalous behavior of magnetic properties in CoFe2O4 ferrite nanoparticles”, Scientia Sinica-Physica, Mechanica & Astronomica, 42, 242-248, (2012).
47.G. A. Sawatzky et al. “ Mössbauer Study of Several Ferrimagnetic Spinels”, Physical Review, 187, 747,(1969).
48.E. Granda et al. “Magnetic ordering effects in the Raman spectra of La1-xMn1-xO3”, Physical Review B, 60, 11879, (1999).
49.Gertjan Koster et al. “Structure, physical properties, and applications of SrRuO3 thin films”, Review of Modern Physics , 84, 253 (2012).
50.M. Woerner et al. “Ultrafast structural dynamics of perovskite superlattices”, Applied Physics A, 96, 83-90, (2009).