| 研究生: |
李俊宏 Li, Jun-Hong |
|---|---|
| 論文名稱: |
電化學還原製備侷限於金屬有機骨架孔洞中的金屬鉬及其於擬電容器之應用 Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal–Organic Framework (MOF) for Pseudocapacitors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 非對稱超級電容器 、電荷儲存 、奈米顆粒 、溶劑熱沉積 、以鋯為基底的金屬有機骨架 |
| 外文關鍵詞: | Asymmetric supercapacitor, Charge storage, Nanoparticles, Solvothermal deposition, Zirconium-based MOF |
| 相關次數: | 點閱:121 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal–organic frameworks, MOF)是一類相對較新的且具有結晶性的多孔材料,由金屬為基底的材料組成節點與有機配體之間的配位鍵形成具有週期性結構的單元。由於金屬有機骨架獨特的特性,例如可調控的孔隙率,超高的比表面積以及金屬中心和有機官能團的多樣性,金屬有機骨架在許多領域引起了極大的關注。
在這項研究中,選擇了一種以鋯為基底的金屬有機骨架(Zr-MOF, 在此選擇MOF-808),並藉由在MOF-808中六鋯節點上安裝空間分離的Mo(VI)活性位置,然後將Mo(VI)電化學還原為金屬鉬,來製備侷限於金屬有機骨架奈米孔洞中的金屬鉬奈米顆粒。受限於金屬有機骨架孔洞中的金屬鉬在中性水相電解質中表現出可逆的氧化還原活性,並用作擬電容器的負極材料。另外,我們也製備了另一種以金屬有機骨架為基底的擬電容材料 - 將錳安裝於另一Zr-MOF與奈米碳管形成的奈米複合材料,可用於擬電容器的正極材料。最後藉由兩種以金屬有機骨架為基底的擬電容材料,搭配中性水相電解質,製造出以Zr-MOF為基底的非對稱擬電容器。
In this thesis, metallic molybdenum nanoparticles confined in the nanopores of a zirconium-based MOF (Zr-MOF), MOF-808, are prepared by a self-limiting decoration of spatially isolated Mo(VI) sites on the hexa-zirconium nodes of MOF-808, followed by the electrochemical reduction of Mo(VI) to metallic Mo. The obtained pore-confined Mo exhibits reversible redox activity in a neutral aqueous electrolyte and is served as the pseudocapacitive material for negative electrodes. By introducing another MOF-based pseudocapacitive material that can be used for positive electrodes, a manganese-decorated Zr-MOF-carbon nanotube nanocomposite, as a demonstration, the all-Zr-MOF-based asymmetric pseudocapacitors with an aqueous electrolyte are fabricated.
[1] L.L. Zhang, X.S. Zhao, Carbon-based Materials as Supercapacitor Electrodes. Chem. Soc. Rev., 38, 2520-2531, 2009.
[2] S. Zhang, G.Z. Chen, Manganese Oxide Based Materials for Supercapacitors. Energy Materials, 3, 186-200, 2008.
[3] G.P. Wang, L. Zhang, J.J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012.
[4] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, New York, 2001.
[5] G.H. Yu, L.B. Hu, M. Vosgueritchian, H.L. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z.N. Bao, Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett., 11, 2905-2911, 2011.
[6] M.K. Debe, Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature, 486, 43-51, 2012.
[7] Y. Xu, M. Kraft, R. Xu, Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting. Chem. Soc. Rev., 45, 3039-3052, 2016.
[8] I. Roger, M.A. Shipman, M.D. Symes, Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem., 1, 2017.
[9] X.M. Li, X.G. Hao, A. Abudula, G.Q. Guan, Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects. J. Mater. Chem. A, 4, 11973-12000, 2016.
[10] P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008.
[11] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy Environ. Sci., 7, 1597-1614, 2014.
[12] L.B. Wang, H.L. Yang, T. Shu, X. Chen, Y.H. Huang, X.L. Hu, Rational Design of Three-Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors. ChemElectroChem, 4, 2428-2441, 2017.
[13] C.T. Alexander, R.P. Forslund, K.P. Johnston, K.J. Stevenson, Tuning Redox Transitions via the Inductive Effect in LaNi1-xFexO3−δ Perovskites for High-Power Asymmetric and Symmetric Pseudocapacitors. ACS Appl. Energy Mater., 2, 6558-6568, 2019.
[14] L.D. Feng, Y.F. Zhu, H.Y. Ding, C.Y. Ni, Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. J. Power Sources, 267, 430-444, 2014.
[15] K. Jost, G. Dion, Y. Gogotsi, Textile Energy Storage in Perspective. J. Mater. Chem. A, 2, 10776-10787, 2014.
[16] N.L. Wu, Nanocrystalline Oxide Supercapacitors. Mater. Chem. Phys., 75, 6-11, 2002.
[17] D. Majumdar, T. Maiyalagan, Z.Q. Jiang, Recent Progress in Ruthenium Oxide-Based Composites for Supercapacitor Applications. ChemElectroChem, 6, 4343-4372, 2019.
[18] J.Y. Ji, L.L. Zhang, H.X. Ji, Y. Li, X. Zhao, X. Bai, X.B. Fan, F.B. Zhang, R.S. Ruoff, Nanoporous Ni(OH)2 Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 7, 6237-6243, 2013.
[19] Z.M. Liu, H.Y. Zhang, Q. Yang, Y.W. Chen, Graphene / V2O5 Hybrid Electrode for an Asymmetric Supercapacitor with High Energy Density in an Organic Electrolyte. Electrochim. Acta, 287, 149-157, 2018.
[20] D. Majurndar, M. Mandal, S.K. Bhattacharya, V2O5 and its Carbon-Based Nanocomposites for Supercapacitor Applications. ChemElectroChem, 6, 1623-1648, 2019.
[21] X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 6, 3206-3213, 2012.
[22] C.W. Kung, H.W. Chen, C.Y. Lin, R. Vittal, K.C. Ho, Synthesis of Co3O4 Nanosheets via Electrodeposition Followed by Ozone Treatment and Their Application to High-Performance Supercapacitors. J. Power Sources, 214, 91-99, 2012.
[23] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. J. Electrochem. Soc., 153, A2171-A2180, 2006.
[24] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes. Chem. Soc. Rev., 40, 1697-1721, 2011.
[25] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting Polymers as Active Materials in Electrochemical Capacitors. J. Power Sources, 47, 89-107, 1994.
[26] G.A. Snook, P. Kao, A.S. Best, Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources, 196, 1-12, 2011.
[27] J.R. Miller, P. Simon, Materials Science - Electrochemical Capacitors for Energy Management. Science, 321, 651-652, 2008.
[28] C.Z. Yuan, L. Yang, L.R. Hou, L.F. Shen, X.G. Zhang, X.W. Lou, Growth of Ultrathin Mesoporous Co3O4 Nanosheet Arrays on Ni Foam for High-Performance Electrochemical Capacitors. Energy Environ. Sci., 5, 7883-7887, 2012.
[29] H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K.L. Zhang, Y.Y. Li, A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes. Nano Res., 3, 895-901, 2010.
[30] P.C. Chen, G.Z. Shen, Y. Shi, H.T. Chen, C.W. Zhou, Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano, 4, 4403-4411, 2010.
[31] J. Yan, T. Wei, W.M. Qiao, B. Shao, Q.K. Zhao, L.J. Zhang, Z.J. Fan, Rapid Microwave-Assisted Synthesis of Graphene Nanosheet/Co3O4 Composite for Supercapacitors. Electrochim. Acta, 55, 6973-6978, 2010.
[32] J.W. Lang, X.B. Yan, Q.J. Xue, Facile Preparation and Electrochemical Characterization of Cobalt Oxide/Multi-Walled Carbon Nanotube Composites for Supercapacitors. J. Power Sources, 196, 7841-7846, 2011.
[33] C.Z. Yuan, L. Yang, L.R. Hou, J.Y. Li, Y.X. Sun, X.G. Zhang, L.F. Shen, X.J. Lu, S.L. Xiong, X.W. Lou, Flexible Hybrid Paper Made of Monolayer Co3O4 Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Adv. Funct. Mater., 22, 2560-2566, 2012.
[34] B. Wang, J.S. Chen, Z.Y. Wang, S. Madhavi, X.W. Lou, Green Synthesis of NiO Nanobelts with Exceptional Pseudo-Capacitive Properties. Adv. Energy Mater., 2, 1188-1192, 2012.
[35] H.A. Pang, Q.Y. Lu, Y.Z. Zhang, Y.C. Li, F. Gao, Selective Synthesis of Nickel Oxide Nanowires and Length Effect on Their Electrochemical Properties. Nanoscale, 2, 920-922, 2010.
[36] Z.Y. Lu, Z. Chang, J.F. Liu, X.M. Sun, Stable Ultrahigh Specific Capacitance of NiO Nanorod Arrays. Nano Res., 4, 658-665, 2011.
[37] C.Z. Yuan, J.Y. Li, L.R. Hou, L. Yang, L.F. Shen, X.G. Zhang, Facile Growth of Hexagonal NiO Nanoplatelet Arrays Assembled by Mesoporous Nanosheets on Ni Foam Towards High-Performance Electrochemical Capacitors. Electrochim. Acta, 78, 532-538, 2012.
[38] X.R. Liu, P.G. Pickup, Ru Oxide Supercapacitors with High Loadings and High Power and Energy Densities. J. Power Sources, 176, 410-416, 2008.
[39] H. Jiang, T. Zhao, J. Ma, C.Y. Yan, C.Z. Li, Ultrafine Manganese Dioxide Nanowire Network for High-Performance Supercapacitors. ChemComm, 47, 1264-1266, 2011.
[40] J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Fast and Reversible Surface Redox Reaction of Graphene-MnO2 Composites as Supercapacitor Electrodes. Carbon, 48, 3825-3833, 2010.
[41] J.A. Xu, L. Gao, J.Y. Cao, W.C. Wang, Z.D. Chen, Preparation and Electrochemical Capacitance of Cobalt Oxide (Co3O4) Nanotubes as Supercapacitor Material. Electrochim. Acta, 56, 732-736, 2010.
[42] C.Z. Yuan, X.G. Zhang, L.R. Hou, L.F. Shen, D.K. Li, F. Zhang, C.G. Fan, J.M. Li, Lysine-Assisted Hydrothermal Synthesis of Urchin-Like Ordered Arrays of Mesoporous Co(OH)2 Nanowires and Their Application in Electrochemical Capacitors. J. Mater. Chem., 20, 10809-10816, 2010.
[43] C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, Microwave-Assisted Gas/Liquid Interfacial Synthesis of Flowerlike NiO Hollow Nanosphere Precursors and Their Application as Supercapacitor Electrodes. J. Mater. Chem., 21, 3204-3209, 2011.
[44] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc., 132, 7472-7477, 2010.
[45] M.H. Yu, W.T. Qiu, F.X. Wang, T. Zhai, P.P. Fang, X.H. Lu, Y.X. Tong, Three Dimensional Architectures: Design, Assembly and Application in Electrochemical Capacitors. J. Mater. Chem. A, 3, 15792-15823, 2015.
[46] H. Jiang, P.S. Lee, C.Z. Li, 3D Carbon Based Nanostructures for Advanced Supercapacitors. Energy Environ. Sci., 6, 41-53, 2013.
[47] H. Jiang, J. Ma, C.Z. Li, Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Adv. Mater., 24, 4197-4202, 2012.
[48] X.L. Hu, W. Zhang, X.X. Liu, Y.N. Mei, Y. Huang, Nanostructured Mo-Based Electrode Materials for Electrochemical Energy Storage. Chem. Soc. Rev., 44, 2376-2404, 2015.
[49] L. Huang, B. Yao, J.Y. Sun, X. Gao, J.B. Wu, J. Wan, T.Q. Li, Z.M. Hu, J. Zhou, Highly Conductive and Flexible Molybdenum Oxide Nanopaper for High Volumetric Supercapacitor Electrode. J. Mater. Chem. A, 5, 2897-2903, 2017.
[50] W. Tang, L.L. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu, K. Zhu, Aqueous Supercapacitors of High Energy Density Based on MoO3 Nanoplates as Anode Material. ChemComm, 47, 10058-10060, 2011.
[51] S. Pal, K.K. Chattopadhyay, Fabrication of Molybdenum Trioxide Nanobelts as High Performance Supercapacitor. Materials Today: Proceedings, 5, 9776-9782, 2018.
[52] X.H. Lu, Y.X. Zeng, M.H. Yu, T. Zhai, C.L. Liang, S.L. Xie, M.S. Balogun, Y.X. Tong, Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Adv. Mater., 26, 3148-3155, 2014.
[53] M. Ghosh, V. Vijayakumar, R. Soni, S. Kurungot, A Rationally Designed Self-Standing V2O5 Electrode for High Voltage Non-Aqueous All-Solid-State Symmetric (2.0 V) and Asymmetric (2.8 V) Supercapacitors. Nanoscale, 10, 8741-8751, 2018.
[54] K.C. Ng, S.W. Zhang, C. Peng, G.Z. Chen, Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs/SnO2 and CNTs/MnO2 Nanocomposites. J. Electrochem. Soc., 156, A846-A853, 2009.
[55] K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang, Microwave-Assisted Hydrothermal Synthesis of Crystalline WO3-WO3·0.5H2O Mixtures for Pseudocapacitors of the Asymmetric Type. J. Power Sources, 196, 2387-2392, 2011.
[56] J.X. Feng, S.H. Ye, X.F. Lu, Y.X. Tong, G.R. Li, Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Appl. Mater. Interfaces, 7, 11444-11451, 2015.
[57] X. Xiao, T.P. Ding, L.Y. Yuan, Y.Q. Shen, Q. Zhong, X.H. Zhang, Y.Z. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y.X. Tong, J. Zhou, Z.L. Wang, WO3-x/MoO3-x Core/Shell Nanowires on Carbon Fabric as an Anode for All-Solid-State Asymmetric Supercapacitors. Adv. Energy Mater., 2, 1328-1332, 2012.
[58] J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y.H. Lee, Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Adv. Funct. Mater., 23, 5074-5083, 2013.
[59] G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Subramanian, M.V. Reddy, S.V. Nair, A.S. Nair, N. Sivakumar, Electrospun α-Fe2O3 Nanostructures for Supercapacitor Applications. J. Mater. Chem. A, 1, 11698-11704, 2013.
[60] R.L. Liang, H.Q. Cao, D. Qian, MoO3 Nanowires as Electrochemical Pseudocapacitor Materials. ChemComm, 47, 10305-10307, 2011.
[61] H. Peng, G.F. Ma, J.J. Mu, K.J. Sun, Z.Q. Lei, Low-Cost and High Energy Density Asymmetric Supercapacitors Based on Polyaniline Nanotubes and MoO3 Nanobelts. J. Mater. Chem. A, 2, 10384-10388, 2014.
[62] Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors. Small, 10, 3803-3810, 2014.
[63] X.H. Lu, M.H. Yu, T. Zhai, G.M. Wang, S.L. Xie, T.Y. Liu, C.L. Liang, Y.X. Tong, Y. Li, High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Lett., 13, 2628-2633, 2013.
[64] T. Zhai, X.H. Lu, H.Y. Wang, G.M. Wang, T. Mathis, T.Y. Liu, C. Li, Y.X. Tong, Y. Li, An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Lett., 15, 3189-3194, 2015.
[65] L.Y. Pei, Y. Yang, H. Chu, J.F. Shen, M.X. Ye, Self-Assembled Flower-Like FeS2/Graphene Aerogel Composite with Enhanced Electrochemical Properties. Ceram. Int., 42, 5053-5061, 2016.
[66] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 11230444, 2013.
[67] S. Kitagawa, R. Kitaura, S. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004.
[68] J.L.C. Rowsell, O.M. Yaghi, Metal-Organic Frameworks: A New Class of Porous Materials. Microporous Mesoporous Mater., 73, 3-14, 2004.
[69] G. Ferey, Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008.
[70] T. Islamoglu, S. Goswami, Z.Y. Li, A.J. Howarth, O.K. Farha, J.T. Hupp, Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017.
[71] S.M. Cohen, Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev., 112, 970-1000, 2012.
[72] J.D. Evans, C.J. Sumby, C.J. Doonan, Post-synthetic Metalation of Metal-Organic Frameworks. Chem. Soc. Rev., 43, 5933-5951, 2014.
[73] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1477-1504, 2009.
[74] J.A. Mason, M. Veenstra, J.R. Long, Evaluating Metal-Organic Frameworks for Natural Gas Storage. Chem. Sci., 5, 32-51, 2014.
[75] G.Q. Li, H. Kobayashi, J.M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Hydrogen Storage in Pd Nanocrystals Covered with a Metal-Organic Framework. Nat. Mater., 13, 802-806, 2014.
[76] S.Q. Ma, H.C. Zhou, Gas Storage in Porous Metal-Organic Frameworks for Clean Energy Applications. ChemComm, 46, 44-53, 2010.
[77] H. Furukawa, F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc., 136, 4369-4381, 2014.
[78] K. Hirai, K. Sumida, M. Meilikhov, N. Louvain, M. Nakahama, H. Uehara, S. Kitagawa, S. Furukawa, Impact of Crystal Orientation on the Adsorption Kinetics of a Porous Coordination Polymer-Quartz Crystal Microbalance Hybrid Sensor. J. Mater. Chem. C, 2, 3336-3344, 2014.
[79] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Ł.J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc., 137, 13308-13318, 2015.
[80] M. Meilikhov, S. Furukawa, K. Hirai, R.A. Fischer, S. Kitagawa, Binary Janus Porous Coordination Polymer Coating for Sensor Devices with Tunable Analyte Affinity. Angew. Chem. Int. Ed., 52, 341-345, 2013.
[81] Y. Takashima, V.M. Martinez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Molecular Decoding Using Luminescence from an Entangled Porous Framework. Nat. Commun., 2, 168, 2011.
[82] P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed., 45, 5974-5978, 2006.
[83] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
[84] M.B. Majewski, A.W. Peters, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Metal-Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett., 3, 598-611, 2018.
[85] L.Q. Ma, C. Abney, W.B. Lin, Enantioselective Catalysis with Homochiral Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1248-1256, 2009.
[86] Q.H. Yang, Q. Xu, H.L. Jiang, Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for Enhanced Catalysis. Chem. Soc. Rev., 46, 4774-4808, 2017.
[87] K.M. Choi, D. Kim, B. Rungtaweevoranit, C.A. Trickett, J.T.D. Barmanbek, A.S. Alshammari, P.D. Yang, O.M. Yaghi, Plasmon-Enhanced PhotoCatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light. J. Am. Chem. Soc., 139, 356-362, 2017.
[88] C.H. Kuo, Y. Tang, L.Y. Chou, B.T. Sneed, C.N. Brodsky, Z.P. Zhao, C.K. Tsung, Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc., 134, 14345-14348, 2012.
[89] X. Xu, R. Cao, S. Jeong, J. Cho, Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Lett., 12, 4988-4991, 2012.
[90] M.D. Allendorf, A. Schwartzberg, V. Stavila, A.A. Talin, A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chem. Eur. J., 17, 11372-11388, 2011.
[91] A. Morozan, F. Jaouen, Metal Organic Frameworks for Electrochemical Applications. Energy Environ. Sci., 5, 9269-9290, 2012.
[92] Y.Z. Han, P.F. Qi, S.W. Li, X. Feng, J.W. Zhou, H.W. Li, S.Y. Su, X.G. Li, B. Wang, A Novel Anode Material Derived from Organic-Coated ZIF-8 Nanocomposites with High Performance in Lithium Ion Batteries. ChemComm, 50, 8057-8060, 2014.
[93] F.S. Ke, Y.S. Wu, H.X. Deng, Metal-Organic Frameworks for Lithium Ion Batteries and Supercapacitors. J Solid State Chem, 223, 109-121, 2015.
[94] A.J. Howarth, Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang, J. Hupp, O.K. Farha, Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nat. Rev. Mater., 1, 15018, 2016.
[95] N.C. Burtch, H. Jasuja, K.S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks. Chem. Rev., 114, 10575-10612, 2014.
[96] S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable Metal-Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci., 4, 440-450, 2018.
[97] L. Sun, M.G. Campbell, M. Dinca, Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem. Int. Ed., 55, 3566-3579, 2016.
[98] J.H. Li, Y.S. Wang, Y.C. Chen, C.W. Kung, Metal-Organic Frameworks Toward Electrocatalytic Applications. Appl. Sci., 9, 2427, 2019.
[99] C.H. Hendon, D. Tiana, A. Walsh, Conductive Metal-Organic Frameworks and Networks: Fact or Fantasy? Phys. Chem. Chem. Phys., 14, 13120-13132, 2012.
[100] C.W. Kung, P.C. Han, C.H. Chuang, K.C.W. Wu, Electronically Conductive Metal-Organic Framework-Based Materials. APL Mater., 7, 110902, 2019.
[101] S.Y. Lin, P.M. Usov, A.J. Morris, The Role of Redox Hopping in Metal-Organic Framework Electrocatalysis. ChemComm, 54, 6965-6974, 2018.
[102] P.M. Usov, C. Fabian, D.M. D'Alessandro, Rapid Determination of the Optical and Redox Properties of a Metal-Organic Framework via in situ Solid State Spectroelectrochemistry. ChemComm, 48, 3945-3947, 2012.
[103] R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 11, 5293-5308, 2017.
[104] Z.X. Cai, Z.L. Wang, J. Kim, Y. Yamauchi, Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Adv. Mater., 31, 1804903, 2019.
[105] H.L. Wang, Q.L. Zhu, R.Q. Zou, Q. Xu, Metal-Organic Frameworks for Energy Applications. Chem, 2, 52-80, 2017.
[106] A. Indra, T. Song, U. Paik, Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Adv. Mater., 30, 1705146, 2018.
[107] F. Yang, W.Y. Li, Y.C. Rui, B.H.J. Tang, Improved Specific Capacity of Nb2O5 by Coating on Carbon Materials for Lithium-Ion Batteries. ChemElectroChem, 5, 3468-3477, 2018.
[108] T.T. Huang, Z. Lou, Y. Lu, R. Li, Y. Jiang, G.Z. Shen, D. Chen, Metal-Organic-Framework-Derived MCo2O4 (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications. ChemElectroChem, 6, 5836-5843, 2019.
[109] Y. Yan, P. Gu, S.S. Zheng, M.B. Zheng, H. Pang, H.G. Xue, Facile Synthesis of an Accordion-Like Ni-MOF Superstructure for High-Performance Flexible Supercapacitors. J. Mater. Chem. A, 4, 19078-19085, 2016.
[110] Y. Jiao, J. Pei, D.H. Chen, C.S. Yan, Y.Y. Hu, Q. Zhang, G. Chen, Mixed-Metallic MOF Based Electrode Materials for High Performance Hybrid Supercapacitors. J. Mater. Chem. A, 5, 1094-1102, 2017.
[111] S.W. Gao, Y.W. Sui, F.X. Wei, J.Q. Qi, Q.K. Meng, Y.J. Ren, Y.Z. He, Dandelion-Like Nickel/Cobalt Metal-Organic Framework Based Electrode Materials for High Performance Supercapacitors. J. Colloid Interface Sci., 531, 83-90, 2018.
[112] R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano, 9, 6288-6296, 2015.
[113] K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of Nanocrystalline Metal-Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
[114] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater., 16, 220-224, 2017.
[115] D.W. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z.H. Huang, M. Lee, L. Shaw, S.C. Chen, A.A. Yakovenko, A. Kulkarni, J.P. Xiao, K. Fredrickson, J.B. Tok, X.D. Zou, Y. Cui, Z.A. Bao, Robust and Conductive Two-Dimensional Metal-Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance. Nat. Energy, 3, 30-36, 2018.
[116] C.W. Kung, K. Otake, C.T. Buru, S. Goswami, Y.X. Cui, J.T. Hupp, A.M. Spokoyny, O.K. Farha, Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 140, 3871-3875, 2018.
[117] Y.S. Wang, Y.C. Chen, J.H. Li, C.W. Kung, Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. Eur. J. Inorg. Chem., 3036-3044, 2019.
[118] L. Shao, Q. Wang, Z.L. Ma, Z.Y. Ji, X.Y. Wang, D.D. Song, Y.G. Liu, N. Wang, A High-Capacitance Flexible Solid-State Supercapacitor Based on Polyaniline and Metal-Organic Framework (UiO-66) Composites. J. Power Sources, 379, 350-361, 2018.
[119] X.T. Xu, J. Tang, H.Y. Qian, S.J. Hou, Y. Bando, M.S.A. Hossain, L.K. Pan, Y. Yamauchi, Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Appl. Mater. Interfaces, 9, 38737-38744, 2017.
[120] Y.S. Wang, J.L. Liao, Y.S. Li, Y.C. Chen, J.H. Li, W.H. Ho, W.H. Chiang, C.W. Kung, Zirconium-Based Metal-Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Appl. Nano Mater., 2020.
[121] D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dinca, High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal-Organic Graphene Analogue. J. Am. Chem. Soc., 136, 8859-8862, 2014.
[122] H. Noh, C.W. Kung, K. Otake, A.W. Peters, Z.Y. Li, Y.J. Liao, X.Y. Gong, O.K. Farha, J.T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal-Organic Framework. ACS Catal., 8, 9848-9858, 2018.
[123] C.J. Lu, T. Ben, S.X. Xu, S.L. Qiu, Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film. Angew. Chem. Int. Ed., 53, 6454-6458, 2014.
[124] S.D. Worrall, M.A. Bissett, P.I. Hill, A.P. Rooney, S.J. Haigh, M.P. Attfield, R.A.W. Dryfe, Metal-Organic Framework Templated Electrodeposition of Functional Gold Nanostructures. Electrochim. Acta, 222, 361-369, 2016.
[125] H. Yoo, A. Welle, W. Guo, J. Choi, E. Redel, Electrodeposition of WO3 Nanoparticles into Surface Mounted Metal-Organic Framework HKUST-1 Thin Films. Nanotechnology, 28, 115605, 2017.
[126] C.W. Kung, C.O. Audu, A.W. Peters, H. Noh, O.K. Farha, J.T. Hupp, Copper Nanoparticles Installed in Metal-Organic Framework Thin Films are Electrocatalytically Competent for CO2 Reduction. ACS Energy Lett., 2, 2394-2401, 2017.
[127] K. Otake, J.Y. Ye, M. Mandal, T. Islamoglu, C.T. Buru, J.T. Hupp, M. Delferro, D.G. Truhlar, C.J. Cramer, O.K. Farha, Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal-Organic Frameworks. ACS Catal., 9, 5383-5390, 2019.
[128] Y.C. Chen, W.H. Chiang, D. Kurniawan, P.C. Yeh, K. Otake, C.W. Kung, Impregnation of Graphene Quantum Dots into a Metal-Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
[129] Y.S. Wang, J.L. Liao, Y.S. Li, Y.C. Chen, J.H. Li, W.H. Ho, W.H. Chiang, C.W. Kung, Zirconium-Based Metal-Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Appl. Nano Mater., 3, 1448-1456, 2020.
[130] H. Noh, Y.X. Cui, A.W. Peters, D.R. Pahls, M.A. Ortuno, N.A. Vermeulen, C.J. Cramer, L. Gagliardi, J.T. Hupp, O.K. Farha, An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc., 138, 14720-14726, 2016.
[131] J. Wang, Analytical Electrochemistry, John Wiley & Sons, Hoboken, NJ, USA, 2006.
[132] H. Xu, J.X. Zhuang, Y. Chen, J.X. Wu, J.L. Zhang, Preparation and Performance of Co3O4-NiO Composite Electrode Material for Supercapacitors. RSC Adv., 4, 15511-15517, 2014.
[133] R. Syed, S.K. Ghosh, P.U. Sastry, G. Sharma, R. Hubli, J.K. Chakravartty, Electrodeposition of Thick Metallic Amorphous Molybdenum Coating from Aqueous Electrolyte. Surf. Coat. Technol., 261, 15-20, 2015.
[134] T.J. Morley, L. Penner, P. Schaffer, T.J. Ruth, F. Benard, E. Asselin, The Deposition of Smooth Metallic Molybdenum from Aqueous Electrolytes Containing Molybdate Ions. Electrochem commun, 15, 78-80, 2012.
[135] S.N. Hasan, M. Xu, E. Asselin, Electrosynthesis of Metallic Molybdenum From Water Deficient Solution Containing Molybdate Ions and High Concentrations of Acetate. Surf. Coat. Technol., 357, 567-574, 2019.
[136] S. Ozkar, G.A. Ozin, R.A. Prokopowicz, Photooxidation of Hexacarbonylmolybdenum(0) in Sodium Zeolite-Y to Yield Redox-Interconvertible Molybdenum(Vi) Oxide and Molybdenum(Iv) Oxide Monomers. Chem. Mater., 4, 1380-1388, 1992.
[137] J.G. Choi, L.T. Thompson, XPS Study of As-prepared and Reduced Molybdenum Oxides. Appl. Surf. Sci., 93, 143-149, 1996.
[138] B. Zhou, S. Ceckiewicz, B. Delmon, Synergy in N-Ethylformamide Dehydration by Mixtures of MoO3 and α-Sb2O4. J. Phys. Chem., 91, 5061-5067, 1987.
[139] S.O. Grim, L.J. Matienzo, X-Ray Photoelectron-Spectroscopy of Inorganic and Organometallic Compounds of Molybdenum. Inorg. Chem., 14, 1014-1018, 1975.
[140] R. Nyholm, N. Martensson, Core Level Binding-Energies for the Elements Zr-Te (Z = 40-52). J. Phys. C: Solid State Phys., 13, L279-L284, 1980.
[141] C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev., 44, 7484-7539, 2015.
[142] Y.Z. Wang, Y.X. Liu, H.Q. Wang, W. Liu, Y. Li, J.F. Zhang, H. Hou, J.L. Yang, Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes. ACS Appl. Energy Mater., 2, 2063-2071, 2019.
[143] Y.X. Liu, Y.Z. Wang, Y.J. Chen, C. Wang, L. Guo, NiCo-MOF Nanosheets Wrapping Polypyrrole Nanotubes for High-Performance Supercapacitors. Appl. Surf. Sci., 507, 145089, 2020.