| 研究生: |
林威溢 Lin, Wei-Yi |
|---|---|
| 論文名稱: |
分析及比較各種演算法以解決不同尺寸及LIB限制下的裝櫃問題 Analysis and Comparison of Various Algorithms on Bin Packing Problem with Variable Bin Size and LIB Constraint |
| 指導教授: |
許瑞麟
Sheu, Ruey-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 裝箱問題 、依序裝箱法 、最適裝箱法 、調和裝箱法 、貨櫃的裝載率 、極限近似比 、LIB限制 |
| 外文關鍵詞: | Bin packing, First fit, Best fit, Harmonic fit, LIB constraint, AAR, space utilization |
| 相關次數: | 點閱:123 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是探討貨物線上及時裝載入貯藏櫃的裝箱問題。基於運輸安全及平穩度的要求,較長(或較重)的貨物必需裝載於貯藏櫃的底部,且不得置放於較短(或較輕)的其它貨物之上。這樣的限制條件我們稱之為LIB (Longest Item at the Bottem)。裝箱問題就算沒有LIB限制式就已經是NP-hard,因此本論文將探討三種啟發示演算法(first fit, best fit, harmonic fit)計算精度的估計。我們首先對貨櫃的裝載率加以分類,從而估計出最佳裝載方式下,所需貨櫃總長度的下界值。然後再計算這三種演算法AAR值的上界(演算法所求出的值比上最佳值)。最後再利用數值結果來比較這三種演算法的效率及驗証我們所估計出的AAR值上界。
In this thesis, we study the online bin packing problem with variable bin sizes. Based on the safety and stability requirement during the shipment, longer(heavier) items should be placed at the bottom of a bin and can not be placed anywhere above the shorter(lighter) items. We call this as the LIB constraint(Longest Item at the Bottom). Bin packing problem is a difficult NP-hard problem even with the absence of the LIB constraint. Therefore, we try to estimate the asymptotic approximation ratio(AAR)(the ratio of the value by the algorithm to the optimal value) for three heuristic algorithms: First fit, Best fit, and Harmonic fit. To do this, we first classify the used bins according to their space utilization so that a lower bound for the unknown optimal value can be estimated. Then we compute an upper bound for the AAR. Finally, we implement the three algorithms to compare the practical performance and justify the upper bound for the AAR ratio.
[1] C. Babel, Algorithms for on-line bin-packing problems with cardinality cinstraints, Discrete Applied Mathematics 143, 238-251, 2004
[2] R. Burkard, G. Zhang, Bounded space on-line variable-sized bin packing, Acta Cybernet 13, 63-76, 1997
[3] M. Carlyle, K. Knutson, J. Fowler, Bin covering algorithms in the second stage of the lot to order matching problem, Journal of the Operational Research Society 52, 1232-1243, 2001
[4] S. A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Annual ACM Symp. on the Theory of Computing, 151-158, 1971
[5] J. Csirik, An on-line algorthm for variable sized bin packing, Acta Informatica 26, 697-709, 1989
[6] P. Dell’Olmo, H. Kellerer, M. G. Speranza, Z. Tuza, A 13/12 approcimation algorithm for bin packing with extendable bins, Information Processing Letters 65, 229-233, 1998
[7] Fernandez W de la vega, G. S. Lueker, Bin packing can be solved within 1+ in linear time, Combinatorics 1, 349-355, 1981
[8] D. K. Friesen, M. A. Langston, Varible sized bin packing, SIAM J. Comput. 15, 222-230, 1986
[9] D. K. Friesen, M. A. Langston, A storage-size selection problem, Inform. Process. Lett. 18, 295-296, 1984
[10] D. S. Johnson, A. Demers, J. D. Ullman, R. L. Graham, Worst-Casw performance bounds for simple one-dimensional packing algorthms, SIAM Journal of Computing 3, 299-325, 1974
[11] J. Johnson, Fast algorithms for bin packing, Journal of Computer and System Science 8, 272-314, 1974
[12] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 85-104, 1972
[13] N. Kinnersley, M. Langston, Online varible-sized bin packing, Discrete Appl. Math. 22, 143-148, 1989
[14] CC. Lee, DT. Lee, A simple on-line bin packing algorithm, Journal of the Association for Computing Machinery 32, 562-572, 1985
[15] J. Y. Lin, P. Manyem, R. L. Sheu, Performance Estimations of First Fit Algorithm for Online Bin Packing with Variable Bin Sizes and LIB constraints
[16] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a survey, European Journal of Operational Research 141, 241-252, 2002
[17] P. Manyem, Bin packing and covering with longest items at the bottom: online version, ANZIAM J.43(E), E186-E232, 2002
[18] P. Manyem, Uniformly sized bin packing and covering: online version, J. Misra(Ed.), Industrial Mathematics and Statistics, Narosa Publishing House(New Delhi), 447-485, 2003
[19] P. Manyem, Approximation lower bounds in online LIB bin packing and covering, J. Automata, Languages and Combinatorics 8, 663-674, 2003
[20] P. Ramanan, D. Brown, C. Lee, D. Lee, On-line bin packing in linear time, J. Algorithms 10, 305-326, 1989
[21] M. B. Richey, Improved bounds for harmonic-based bin packing algorithms, Discrete Applied Mathematics 34, 203-227, 1991
[22] Steven, S. Seiden, An optimal online algorithm for bounded space variable-sizes bin packing, SIAM J. Discrete Math. Vol. 14 No. 4, 458-470, 2001
[23] A. V. Vliet, Optimal on-line algorithms for variable-sizes bin covering, Information Processing Letters, 277-284, 1992
[24] X. Wenxun, C. Feng, A-shaped bin packing: worst case analysis via simulation, Journal of Industrial and Management Optiminzation Vol.1 No.3, 323-335, 2005
[25] W. Xing, A bin packing problem with over-sized items, Operations Research Letters 30, 83-88, 2002
[26] G. Woeginger, Improved space for bounded-space, on-line bin-packing, SIAM J. Discrete Math. 6, 575-581, 1993
[27] A. C. C. Yao, New algorithms for bin packing, J. ACM 27, 207-227, 1980
[28] G. Zhang, Worst-case analysis of the FFH algorithm for online variable-sized bin packing, Computing 56, 165-172, 1996
[29] G. Zhang, Parameterized on-line open-end bin packing, Computing 60, 267-273, 1998