| 研究生: |
黃韋傑 Huang, Wei-Jie |
|---|---|
| 論文名稱: |
形貌改良的單晶二矽化鐵和矽化鐵奈米線之製備與特性量測 Synthesis and properties of morphology-improved single crystalline FeSi and β-FeSi2 nanowires |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 二矽化鐵 、矽化鐵 、化學氣相沉積法 、奈米線 |
| 外文關鍵詞: | β-FeSi2, FeSi, CVD, Nanowires |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究方向是以化學氣相沉積法來製備FeSi和β-FeSi2奈米線並探討其生長機制及成長參數對形貌之影響,另外提出兩種方法做為奈米線之形貌改良,並對形貌改良前後之奈米線做性質比較。
在成長參數的部分,本實驗分別以溫度與持溫時間,流量和沉積位置,以及壓力三部份來探討。發現實驗溫度從750℃開始上升至850℃時β-FeSi2有奈米線之生成,但是到了950℃即有團塊化的行為,其原因為奈米線生長到後期互相反應的結果。在流量和沉積位置則是以氧化鋁基板在不同的流量和位置上進行沉積,用EDX分析基板上的反應物訊號來確定反應物濃度分佈。在不同壓力的實驗則是利用CS(Covered-substrate)的方法來分析高壓下奈米線線徑增加的原因,並在高溫高壓的環境下成長出FeSi奈米線。
形貌改良則是以Pre-Deposition和Covered-substrate來對奈米線進行形貌改良,以不使用催化劑或是模板的方式,單純控制成長參數來成長奈米線陣列,最後分別比較改良前後奈米線之磁性以及場發射性質。
In this thesis, we synthesized β-FeSi2 and FeSi nanowires by chemical vapor deposition (CVD). The effect of CVD parameters including temperature, flow rate, during time, working pressure and deposition position in the growth of nanowires have been investigated and we consider all the CVD parameters would affect the supersaturation in the tube furnace. FeSi nanowires were gown under high supersaturation and β-FeSi2 nanowires were grown under low supersaturation. In the morphology improvement, two methods, “Pre-deposition method” and “Covered substrate method” were used to deposit nanowire arrays. “Pre-deposition method” could form heterogenerous nucleation sites on the surface of thin film. “Coverer substrate method” is that one substrate is covered by the other substrate. In the interlayer between two substrates, the flow direction is uniform and that would help to grow nanowire arrays. The reaction concentration would decrease from boundary of substrate to the middle and the concentration distribution on the substrate caused different nanostructure. In the property measurement, the magnetic property and field emission property were measured by SQUID and field emission measurement system with Keithley-237. The morphology-improved nanowires have better magnetic properties and field emission properties.
[1] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. Vol.4, p.89. (1964)
[2] Chia Ying Lee,Tseung Yuen Tseng,Seu Yi Li and Pang Lin Tamkang, Journal of Science and Engineering, Vol.6, No.2, p.127-132. (2003)
[3] J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, Journal of Crystal Growth, Volume 310, Issue 23, p.5106-5110. (2008)
[4] Zhu, Y.Q. Journal of Materials Chemistry. p.1859-1864. (1998)
[5] Liu, Z.Q. Journal of Materials Research.Vol.16, pp.683-686. (2001)
[6] Grap T, Rieger T, Blömers Ch, Schäpers T, Grützmacher D, Lepsa MI, Nanotechnology. (2013)
[7] Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Adv.Mater, pp.2477-2481. (2005)
[8] L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U.Go¨sele, Appl. Phys. Lett. Vol.84. (2004)
[9] M.T. Bjo¨rk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H.Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys.Lett. Vol.80, p.1058. (2002)
[10] A.P. Levitt, Whisker Technology, John Wiley & Sons Inc. (1971)
[11] Y.F. Zhang, Y.H. Tang, X.F. Duan, Y. Zhang, C.S. Lee, N. Wang, I. Bello, S.T. Lee, Chem. Phys. Lett. 323, p180. (2002)
[12] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons and W.E. Buhro, Science, vol.270, p.1791. (1990)
[13] N.E. Christensen, Phys.Rev.B, Vol.42, p.7148-7153. (1990)
[14] M. Alexe, V.Dragoi, M.Reiche, Electron. Lett. 36, p.677. (2000)
[15] Takashi, Suemasu, J. Appl. phys vol.39. (2000)
[16] T.Suemasu, Thin Solid Films, Vol.461, p.209-218. (2004)
[17] V.Cronin, Handbook of Thermoelectrics, Press London. (1995)
[18] R.Ware and D.J.Mcneill,Proc.Inst. Electr. Eng.Vol.111, p178. (1964)
[19] Mikio Ito, Hiroshi Nagai, Etsushi Oda, J.Appl.Phys.Vol.91, p2138. (2002)
[20] D.Leong, M. Harry, K.Reeson, and K.Homewood, Nature 387, p.686. (1997).
[21] Nagai H, Katsuyama S, Nakayama S, Kobayashi H, Majima K, Ito M, Materials Transactions, JIM, Vol.39,No.4,p.515-521. (1998)
[22] Yamaguchi K, Heya A, Shimura K, Katsumata T, Yamamoto H,Hojou K. Thin Solid Films ,Vol.461, p.17-21. (2004)
[23] Wang JF, Ji SY, Mimura K, Sato Y, Song SH, Yamane H, Shimada M, Isshiki M, Phys Stat Sol A , Vol.201, p2905–2909. (2004)
[24] Naito M, Ishimaru M, “Formation process of beta-FeSi2 from amorphous Fe-Si synthesized by ion implantation: Fe concentration dependence”. J Microsc, 236, p.123-127. (2009)
[25] Mahan JE, Geib KM, Robinson GY, Long RG, Xinghua Y, Bai G, Nicolet M, Nathan M, “Epitaxial films of semiconducting beta- FeSi2 on (001) silicon”. Appl Phys Lett, 56, p.2126-2128. (1991)
[26] Shih-Wei Hung, Ping-Hung Yeh. J.Mater.Chem, 21, p.5704. (2011)
[27] S. J. Clark, H. M. Al-Allak, S. Brand and R. A. Abram,Phys. Rev. B: Condens. Matter, 58, p10389. (1998)
[28] D. B. Migas and L. Miglio, Phys. Rev. B: Condens. Matter, p.62. (2000)
[29] L. J. Chen, S. Y. Chen and H. C. Chen, Thin Solid Films, 515, p.8140. (2007)
[30] J.F. Wang, Journal of Crystal Growth 295, p129–132. (2006)
[31] “Role of Carrier Gas Flow and Species Diffusion in Nanowire Growth from Thermal CVD”, Andreas Menzel, Raya GoldbergJ. Phys. Chem. C, 116, p.5524-5530. (2012)
[32] Colli, A.; Fasoli, A.; Hofmann, S.; Ducati, C.; Robertson, J.Ferrari, Nanotechnology, 17, p1046. (2006)
[33] Xiangdong Li, Guowen Meng, Qiaoling Xu, Nano Lett, Vol.11, p.1704-1709. (2011)
[34] X光繞射原理及其應用,83年6月,工業材料86期,林麗娟
[35] Eidgenössische Technische Hochschule Zürich-Electron microscopy site, F.Krumeich, Vol.11. (2012)
[36] “Synthesis and properties of single-crystalline β-FeSi2 nanowires”, J.Y. YANG. (2013)
[37] Florian Dhalluin, Pierre J. Desre, Martein I, Journal of Applied Physics, Vol.102. (2007)
[38] J.Johansson, CPT.Svensson, T.Martensson, L.Samuelson, and W Seifert, J. Phys. Chem. B.109, Vol.28, p.13567-13571. (2005)
[39] L.Ratke P.W.Voorhees, New York, p.117-124. (2002)
[40] H. Yamane, T. Yamada, Journal of Alloys and Compounds, 476, p.282-287. (2009)
[41] Dy.Er, Fr-Mo, Landolt-Börnstein, Group IV Physical Chemistry Volume 5e, p.1-6. (1995)
[42] Hailong Wang, Luis A. Zepeda-Ruiz, George H. Gilmer, Moneesh Upmanyu, NATURE COMMUNICATIONS. (1956)
[43] E.I. Givargizov, Springer, New York. (1987)
[44] E.I. Givargizov, A.A. Chernov, Sov. Phys. Crystallogr 18, 89. (1973)
[45] Jun-Ku Ahn, Kyoung-Woo Park, Hyun-June Jung and Soon-Gil Yoon, Nano Lett. Vol.10, p.472-477. (2010)
[46] L.E. Wilson, N.W. Gregory, J.Phys.Chem, 62, p.433. (1958)
[47] Magnus, T. Borgstro¨M, George Immink, Bas Ketelaars, Rienk Algra, and Eric P.A.M. Bakkers, nature nanotechnology, vol 2. (2007)
[48] Jiang Yanfeng, Zhang Yamin, Journal of Semiconductors, Vol. 31, No. 1. (2010)
[49] Davide Barreca, Daniela Bekermann, Elisabetta Comini, Anjana Devi, Roland A. Fischer, The Royal Society of Chemistry, 12, p.3419-3421. (2010)
[50] Zhanjun Gu,M. Parans Paranthaman, Jun Xu,and Zheng Wei Pan,Acsnano, Vol. 3,2, pp.273-278. (2009)
[51] Peng Yu, Xiong Zhang, Dongliang Wang, Lei Wang, and Yanwei Ma, American Chemical Society. (2009)
[52] Richard Ritikos ,Muhamad Rasat Muhamad, Saadah Abdul Rahman , Siti Meriam Ab. Gani , Yoke Khin Yap, CARBON, 49, p.1842-1848. (2011)
[53] Hao Chen, Ajit Roy, Jong-Beom Baek, Lin Zhu, Liming Dai, Jia Qu, Materials Science and Engineering, Vol.70, p.63-91. (2007)
[54] Jiangni Yun, Rui Qu, Zhiyong Zhang, and Jun Li, Hindawi, Advances in Condensed Matter Physics. (2014)
[55] Y.Y.Chen, P.C.Lee, C.B.Tsai, and Neeleshwar, J.Appl. Phys.Vol.91, 251907. (2007)
校內:2024-08-28公開