簡易檢索 / 詳目顯示

研究生: 洪世宗
Hung, Shih-Tzung
論文名稱: 矽基板上軟硬膜的微結構與機械性質之研究
A Study on the Microstructure and Mechanical Properties Analysis of Hard and Soft Flims Deposition on the Si(100) Substrate
指導教授: 鍾震桂
Chung, C.K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 122
中文關鍵詞: 微結構機械性質超高真空離子束濺鍍
外文關鍵詞: Microstructure, Mechanical Properties, Ion Beam Sputtering
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要採超高真空離子束濺鍍(Ion Beam Sputtering, IBS)技術與奈米壓痕技術(Nano-indentation)進行碳、碳/矽、鈦、鈦/矽奈米單層與複合薄膜的成長與機械性質檢測研究,探討薄膜厚度、退火溫度及材料微結構變化對於機械性質之影響,並探討退火後機械性質變化對於熱穩定性質的影響。
    在硬膜鍍於軟基材上的實驗結果顯示,於常溫下初鍍單層碳薄膜結構中,當薄膜厚度增加時硬度會隨之提高,ID/IG比值則隨之降低;而雙層碳/矽(C/Si)和矽/碳(Si/C)薄膜硬度比單層碳薄膜低則是由於矽薄膜的加入。經熱處理後,退火750 °C的單層碳薄膜結構,由原本單晶矽轉變成多晶結構而形成多重晶界(Grain boundary)使碳、矽原子相互擴散反應形成碳化矽(SiC)微粒析出;而在退火900 °C時,SiC微粒析出密度提高而使硬度提升。於雙層碳矽(C/Si)薄膜結構中,經退火750 °C後,薄膜受石墨化(graphitization)影響而導致薄膜硬度降低;隨著退火溫度上升到900 °C時,SiC微粒析出而使薄膜硬度上升。而矽/碳(Si/C)薄膜在熱處理後發現其機械性質變化不大且不易受溫度影響。
    在軟膜鍍於硬基材上的實驗結果顯示,於常溫下初鍍單層鈦薄膜結構中,薄膜厚度增加硬度值隨之增加,而雙層鈦/矽(Ti/Si)薄膜則因有金屬化合物Ti5Si3的形成而導致硬度比單層鈦薄膜高。經熱處理後,薄膜退火350 °C時,硬度為最高,則因有金屬化合物的形成,隨著退火溫度升高薄膜表面會有氧化鈦顆粒的形成而造成表面形貌鬆散,而導致硬度值、韌性値皆下降,而當退火溫度750 °C,表面氧化鈦量也越多,表面的顆粒愈大顆,則相對硬度值、韌性値也相對愈低。

    In this research, the mechanical properties of single layer carbon (C), titanium (Ti) and two layer carbon/silicon (C/Si) and titanium/silicon (Ti/Si) composite structure deposited by ultra-high-vacuum ion beam sputtering (UHV-IBS) have been investigated using nanoindentation measurement technique. The aim of this study is to investigate the effect of film thickness variation, annealing temperature and microstructure characterization on the evolution of mechanical property of single and composite film. The effect of thermal stability on the mechanical properties of thin film has also been discussed.
    In one aspect of hard film deposited on the soft substrate, it was noted that the ID/IG ratio decreased with increasing carbon film thickness on single-layer structure at room temperature (RT) lead to hardness enhancement. The lower the ID/IG was, the more the sp3 bonds were. Compared with single-layer structure, hardness of two-layer structure decreased due to silicon layer addition. Under thermal treatment process, the grain boundaries of polycrystalline Si transformed from single crystalline Si for the interdiffusion reaction between carbon and silicon elements and SiC was formed at 750 °C. When annealing temperature increased at 900 °C, the higher density of SiC particles were separated lead to hardness enhancement. Under two-layer structure case, it can be found that hardness of film decreased at 750 °C due to graphitization then the SiC was formed at 900 °C on the surface of carbon/silicon (C/Si) structure lead to hardness enhancement. From the other side, Interdiffusion reaction was not easily occurred on silicon/carbon structure under thermal annealing process.
    In another aspect of soft film deposited on the hard substrate, it was noted that hardness of single Ti film increased with increasing film thickness due to better crystallization at room temperature (RT). The hardness of titanium/silicon (Ti/Si) composite film enhanced because of the Ti5Si3 formation. Under thermal treatment process, it can be found that the hardness of both titanium film and titanium/silicon composite film increased at 350 °C due to the metal silicide formation. When the annealing temperature increased, hardness and / ratio reduced through the TiO2 particle formed on the surface of thin film let morphology looser. The formation of TiO2 was becoming more and particle size was bigger as the annealing temperature at 750 °C let the hardness and / ratio lower.

    摘 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1-1 前言 1 1-2 研究目的與動機 3 第二章 文獻回顧及基本理論 5 2-1奈米壓痕技術 5 2-1-1基材效應 (Substrate effect) 6 2-1-2壓痕尺寸效應(Indentation Size Effect) 7 2-1-3擠出和沉陷效應(Pile-up & Sink-in effect) 8 2-1-4表面粗糙度效應 (Surface Roughness) 8 2-2 軟硬薄膜之研究進展 9 2-2-1 軟膜鍍硬基材 9 2-2-2 硬膜鍍軟基材 11 第三章 實驗製程與方法 13 3-1 實驗目的 13 3-2 薄膜鍍製 14 3-2-1材料製備 14 3-2-2 鍍膜參數條件 17 3-3 實驗設備 20 3-3-1超高真空離子濺鍍系統 (UHV-IBS) 20 3-3-3-1電子迴旋共振(ECR) 21 3-3-1-2微波(Microwave)原理 23 3-3-2快速退火爐(RTA) 25 3-3-3低掠角X光繞射 (GIAXD) 26 3-3-4原子力顯微鏡 (AFM) 28 3-3-5奈米壓痕試驗機 (Nanoindenter MTS-XP) 32 3-3-5-1薄膜奈米壓痕檢測理論 32 3-3-5-2連續勁度量測(CSM) 37 3-3-6拉曼光譜分析 (Raman Spectroscopy) 42 3-3-7場發射掃描式電子顯微鏡 (FE-SEM) 42 第四章 結果與討論 44 4-1碳/矽硬薄膜的奈米結構 44 4-1-1初鍍碳,碳/矽奈米薄膜基本性質 44 4-1-1-1 AFM表面形貌分析 44 4-1-1-2 SEM表面形貌分析 47 4-1-1-3化學鍵結與微結構分析 49 4-1-1-4機械性質分析 53 4-1-2 退火碳/矽奈米薄膜基本結構 60 4-1-2-1 薄膜經退火處理之化學鍵結 60 4-1-2-2 薄膜經退火處理之AFM表面形貌分析 64 4-1-2-3 薄膜經退火處理之SEM表面形貌分析 67 4-1-2-4 薄膜經退火處理之機械性質 69 4-2 鈦/矽軟薄膜的奈米結構 73 4-2-1初鍍鈦矽奈米薄膜基本性質 73 4-2-1-1微結構分析 73 4-2-1-2 AFM表面形貌分析 75 4-2-1-3 SEM表面形貌分析 76 4-2-1-4 機械性質分析 78 4-2-2 退火鈦/矽奈米薄膜基本結構 81 4-2-2-1薄膜經退火處理之微結構分析 82 4-2-2-2薄膜經退火處理之AFM表面形貌分析 84 4-2-2-3薄膜經退火處理之SEM表面形貌分析 87 4-2-2-4薄膜經退火處理之化學成份分析 91 4-2-2-5薄膜經退火處理之機械性質分析 93 第五章 結論與未來展望 97 5-1 結論 97 5-1-1 硬膜軟基材 97 5-1-2 軟膜硬基材 98 5-2 未來展望 99 5-3 本文貢獻 101 參考文獻 102

    1. P. M. Sarro, “Silicon carbide as a new MEMS technology”, Sensors and Actuators, Vol. 82, pp.210-218, 2000.
    2. C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe and R. Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A, Vol. 97, pp.410-415, 2002.
    3. D. Mingjiang, Z. Kesong, Y. Zhenghai, D. Qian and F. Zhiqiang, “The cuttings performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials, Vol. 9, pp.1753-1757, 2000.
    4. H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate PH-ISFET”, Sensors and Actuators B, Vol. 44, pp.441-445, 1997.
    5. H. Yue, Z. Jizhong, Y. Wenqing, L. Dexing and T. Xu, “Effect of temperature on residual stress and mechanical properties of Ti films prepared by both ion implantation and ion beam assisted deposition”, Applied Surface Science, Vol. 255, pp. 4484-4490, 2009.
    6. M. Geetha , A.K. Singh, R. Asokamani and A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants–A review”, Progress in Materials Science, Vol. 54, pp. 397-427, 2009.
    7. S. P. Murarka, “Silicides for VLSI applications”, Academic, Orlando, 1983.
    8. H. Hertz, “On the contact of elastic solids,” Journal für die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1882.
    9. D. Tabor, “A simple theory of static and dynamic hardness,” Proceedings of theRoyal Society of Edinburgh, Vol. 192, pp. 247-273, 1948.
    10. I. N. Sneddon, “The relationship between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile”, International journal of Engineering Society ,pp. 47-57, 1965
    11. M. Doerner and W. D. Nix, “A method for interpreting the data from depth sensing indentation instruments,” Journal of Materials Research, Vol. 1, pp. 601-609, 1986.
    12. R. B. King, “Elastic analysis of some punch problems for a layered medium”, International Journal of Solids, Vol.23, No.12, pp.1657-1664, 1987.
    13. G. M. Pharr and W. C. Oliver ,“Nanoindentation of silver-relationsbetween hardness and dislocation structure.” Journal of Materials Research, Vol. 4, pp. 94-101, 1989.
    14. G. M. Pharr, W. C. Oliver., and F. R. Brotzen, “On the generality of therelationship among contact stiffness contact area and elastic modulus during indentation”, Journal of Materials Research, Vol. 7, pp. 613-617, 1992.
    15. W. C. Oliver and G. M. Pharr, “An improved technique for determining and elastic modulus using load and displace sensing indentation experiments”, Journal of Materials Research, Vol. 7, No.6, pp.1564-1583, 1992.
    16. J. S. Field and M. V. Swain, “A Simple Predictive Model for Spherical Indentation,” Journal of Materials Research, Vol. 8, pp. 297-306, 1993.
    17. L. Xiaodong and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its application.”Materials Characterization, Vol. 48, pp. 11-36, 2002.
    18. P.J. Burnett and D.S. Rickerby, “The mechanical properties of wear-resistant coatings I: Modelling of hardness behaviour,” Thin Solid Films, Vol. 148, pp. 41-50, 1987.
    19. M. Lichinchi, C. Lenardi, J. Haupt and R. Vitali, “Simulation of Berkovich nanoindentation experiments on thin films using finite element method,” Thin Solid Films, Vol. 312, pp. 240-248, 1998.
    20. R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, Vol. 50, pp. 23-38, 2002.
    21. W.D. Nix, and H. Gao, “Indentation size effects in crystalline materials: a lawfor strain gradient plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, pp. 411-425, 1998.
    22. S. Veprek and A. S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology, pp.175-182, 2001.
    23. J. Musil, F. Kunc, H. Zeman and H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings”, Surface and Coatings Technology, Vol. 154, pp.304-313, 2002.
    24. K. W. McElhaney, J. J. Vlassak, and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” Journal of Materials Research, Vol. 13, No.5, pp.1300-1306, 1998.
    25. Q. Ma and D. R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research, Vol. 10, pp.853-863, 1995.
    26. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, P. h. Houdy, and J. L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films”, Journal of Applied Physics, Vol. 87, pp.7753-7757, 2000.
    27. D. Stone, W. R. LaFontaine, P. Alexopoulos, T. W. Wu and C. Y. Li, “An investigation of hardness and adhesion of sputter-deposited aluminum on silicon by utilizing a continuous indentation test”, Journal of Materials Research, Vol. 3, No. 1, pp.141-147, 1987.
    28. T. Y. Tsui, W. C. Oliver and G. M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy,” Journal of Materials Research, Vol. 11, pp. 752-759, 1996.
    29. A. Bolshakov, W. C. Oliver, and G. M. Pharr, “Influence of stress on the measurement of mechanical properties using:PartⅡ. Finite element simulations,” Journal of Materials Research., Vol. 11, No.3, pp.760-768, 1996
    30. A. Bolshakov and G. M. Pharr,“Influences of pileup on themeasurement of mechanical properties by load and depth sensing indentation techniques", Journal of Materials Research, Vol. 13, No.4, pp.1049-1058, 1998.
    31. T. Y. Tsui and G. M. Pharr, “Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates”, Journal of Materials Research, Vol. 14, No. 1, pp.292-301, 1999.
    32. R. Saha, Z. Xue, Y. Huang, and W. Nix; “Indentation of a soft metal film on a hard substrate: strain gradient hardening effects”, Journal of the Mechanics and Physics of Solids, Vol. 49, pp.1997-2014, 2001.
    33. R. Saha and W. D. Nix, “Soft films on hard substrates nanoindentation of tungsten films on sapphire substrates”, Materials Science and Engineering, A319-321, pp.898-901, 2001.
    34. D. Beegan, S. Chowdhury and M. T. Laugier, “A nanoindentation study of copper films on oxidised silicon substrates”, Surface and Coatings Technology, Vol. 176, pp. 124-130, 2003.
    35. T. Y. Tsui, C. A. Ross and G. M. Pharr, “A method for making substrate- independent hardness measurements of soft metallic films on hard substrates by nanoindentation”, Journal of Materials Research, Vol. 18, No. 6, pp.1383-1391, 2003.
    36. N. Tayebi, A. A. Polycarpus, and T. F. Conry, “ Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques”, Journal of Materials Research, Vol. 19, No. 6, pp. 1791-1802, 2004.
    37. D. Beegan, S. Chowdhury and M. T. Laugier, “Work of indentation methods for determining copper film hardness”, Surface and Coatings Technology, Vol. 192, pp. 57-63, 2005.
    38. Y. Cao, D. D. Nankivil, S. Allameh and W. O. Soboyejo, “Mechanical Properties of Au Films on Silicon Substrates”, Materials and Manufacturing Processes, Vol. 22, pp. 187-194, 2007.
    39. T. Y. Tsui, J. J. Vlassak and W. D. Nix, “Indentation plastic displacement field: Part II. The case of hard films on soft substrates”, Journal of Materials Research , Vol. 14, No. 6, pp.2204-2209, 1999.
    40. X. Chen and J. J. Vlassak, “Numerical study on the measurement of thin film mechanical properties by means of nanoindentation”, Journal of Materials Research, Vol. 16, No. 10, pp. 2974-2982, 2001.
    41. G. Beshkov, G. P. Vassilev, M. R. Elizalde and T. Gomez-Acebo, “Hardness of C, CNx and AlN thin films after rapid thermal annealing”, Material Chemistry and Physics, Vol. 82, pp. 452-457, 2003.
    42. S. Chowdhury, M. T. Laugier, I. Z. Rahman and M. Serantoni, “Nanoindentation combined with scanning force microscope for characterization of mechanical properties of carbon nitride thin films”, Surface and Coatings Technology, Vol. 177, pp. 537-544, 2004.
    43. S. J. Bull, “Nanoindentation of coatings”, Journal of Physics D: Applied Physics, Vol. 38, pp. 393–413, 2005.
    44. N. Wangyang and Y. T. Cheng, “Modeling conical indentation in homogeneous materials and in hard films on soft substrates”, Journal of Materials Research, Vol. 20, No. 2, pp. 521-528, 2005.
    45. S. Chen, L. Liu and T. Wang, “Investigation of the mechanical properties of thin films by nanoindentation considering the effects of thickness and different coating–substrate combinations”, Surface and Coatings Technology, Vol. 191, pp.25-32, 2002.
    46. 白木 靖寬, 吉田 貞史編著, 王建義編譯, "薄膜工程學", 全華科技圖書股份有限公司,(2006).
    47. 鍾秉憲, 鈷奈米粒子之選擇性物理沉積,92年6月
    48. 丁兆元, 任兆杏, “電子迴旋共振等離子體的研究與應用”, 物理學進展, 第12巻第一期, 1992.
    49. 汪建民主編, “材料分析”, 中國材料科學學會, 民87年10月
    50. V. J. Morris, A. R. Kirby, A.P. Gunning, “Atomic Force Microscopy for Biologsts”, Imperial College Press: London, (1999.)
    51. Park Scientific Instruments Corp., Users Guide to Autoprobe CP, Part II, http://www.park.com.
    52. NT-MDT Corp., SPM introduction, http://www.ntmdt.ru.
    53. Digital Instruments Corp., Data Sheets, http://www.di.com.
    54. 經濟部工業局, 工業技術人才培訓講義-AFM原子力顯微鏡技術, 國立成功大學, (2003)
    55. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, No. 6, pp.1564-1583, 1992.
    56. L. Xiaodong and B. Bharat, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization, Vol. 48, pp.11-36, 2002.
    57. F. M. Borodich, L. M. Keer and C.S. Korach, “Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes”, Nanotechnology, Vol. 14, pp.803-808, 2003.
    58. Nano Indenter XP user’s manual, MTS, 2001.
    59. M. Dietiker, R. D. Nyilas, C. Solenthaler and R. Spolenak, “Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity”, Acta Materialia, Vol. 56 pp. 3887–3899, 2008.
    60. T. Y. Tsui, J. Vlassak and W. D. Nix, “Indentation plastic displacement field: Part II. The case of hard films on soft substrates”, Journal of Materials Research, Vol. 14, No. 6, pp.2204-2209, 1999.
    61. T. Y. Tsui, G. M. Pharr and W. C. Oliver, “Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks”, Journal of Materials Research, Vol. 383, pp. 447-452, 1995.
    62. J. Robertson, “Diamonde-Like Amorphous carbon”, Material Science and Engineering Reports: A Review Journal, Vol. 37, pp. 129-281, 2002.
    63. D. Beegan, S. Chowdhury and M. T. Laugier, “The nanoindentation behaviour of hard and soft films on silicon substrates”, Thin Solid Films, Vol. 466, pp.167-174, 2004.

    下載圖示 校內:2012-07-29公開
    校外:2019-07-29公開
    QR CODE