簡易檢索 / 詳目顯示

研究生: 游旻達
Yu, Ming-Ta
論文名稱: 高鐵列車在南科園區引致振動之影響研究
The Study of Vibration Induced by the High-Speed Train in Southern Taiwan Science Park
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 161
中文關鍵詞: 列車振動高速鐵路振動頻譜
外文關鍵詞: high speed train, vibration, spectrum
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為了促進南北區域高科技產業之均衡發展政府於民國86年成立南部科學園區,如今已成為國內南部高科技產業之發展重鎮。但是,高速鐵路預定路線將通過此處,這對於相當要求環境微振動量的高科技產業來說是一個嚴重的訊息。本研究即是針對此問題蒐集、並分析相關的環境振動資料,以瞭解高速鐵路對園區內的影響。

      因此本文主要是藉由實際量測高鐵在不同車速下引致之地盤振動值,以建立出一套量測鐵路振動之標準量測方法與作業程序,試圖建立出不同車速下的振動影響趨勢,找出合理的通過時速,期使在不用付出額外代價的情況下,能有效減低對當地的衝擊,並提供相關單位研究與決策之參考。在資料擷取與分析軟體方面均是使用本實驗室自行開發之軟體,經過結果驗證後,發現結果與其他單位相當吻合。
    本研究發現在相同的車速條件下,無論是南下列車或者是北上列車,其振動頻譜的分布趨勢大致都相同。儘管主要列車振動的頻率分佈與車速乃成正比關係,但實際量測到的各車速頻譜分布趨勢確有所不同,這是因為不同的車速分別所產生各個模態的主要頻率透過土壤傳遞後有濾波或放大的效果,並非完全取決於車速的影響,而是同時取決於速度與振波傳遞體的性質。

      整體而言,就目前空車試車的情況之下,本文建議若非不得以請盡量不要以260~300km/hr的時速通過,且盡量避免以160km/hr的速度通過。最好是高速時保持在230~240km/hr,非得減速通過時能降到120km/hr或以下,如此即能使列車振動的影響減至最低。

      In order to balance the development of Hi-Tech industry between the northern and southern regions, the government began to establish the Southern Taiwan Science Park at Hsin-Hua in 1997. It has already become an important city for developing Hi-Tech industry in the Southern Taiwan. The high speed train will pass through the park, this will cause the serious vibration problem for the Hi-Tech Park. This research is to study and analyze the relevant vibration, such as vibration induced by high speed train, at the ground surface.

      This research mainly sets up a standard method and operational procedure for measuring the ground vibration induced by the high speed train. It attempts to find the trend influenced by the vibration in the different train speeds. It can reduce the impact to local area effectively without paying any extra terms, and offer the reference for relevant organizations to research and make policy. The software used in this study is developed by ourselves in the laboratory for data acquisition and measurement analysis. We found that the result was matched with that of other organizations. This research shows that the trend of vibration amplitude spectrum is approximately equal for the train going to the south or the north if the train's speed is the same. The distribution of the main train's vibration frequency is proportion to the train's speed, but the real trend of spectrum distribution of every train is different from the measuring results.

      In conclusion, we suggest that when the train passes through the site, the train speed should not be in the range from 260km/hr to 300km/hr except for the policy need. And, also the speed should avoid being 160km/hr. The optimum speed is the range from 230km/hr to 240km/hr. If the train speed is limited to less than or equal to 120km/hr, the influence of vibration induced by train will be reduced the most.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章緒論 1 1.1研究動機 1 1.2研究目的 1 1.3研究方法及內容 2 第二章文獻回顧 3 2.1引言 3 2.2列車振動相關研究之文獻回顧 4 第三章相關理論 15 3.1基本波傳理論 15 3.1.1實體波 15 3.1.2表面波 16 3.2列車運行引致之振動 20 3.3訊號處理與分析 22 3.3.1訊號 22 3.3.2均方根值 26 3.3.3頻率域分析法的工具-快速傅利葉轉換 28 3.4振動頻譜分析 32 3.5振動資料的頻率域分析 33 3.6相關的振動規範 36 第四章列車振動量測試驗 46 4.1前言 46 4.2現況描述 47 4.3各測線之位置分佈 50 4.4量測儀器硬體、軟體規格 50 4.4.1三向度加速度計 50 4.4.2動態數位訊號擷取分析器 53 4.4.3電腦 54 第五章分析方法與結果討論 46 5.1前言 56 5.2分析方法 56 5.2.1列車車速的計算方式 56 5.2.2列車振動分析時間區間的選定方式 57 5.2.3列車振動的分析方式 58 5.2.4背景值的選定 59 5.3分析結果與討論 60 5.3.1分析結果的驗證 60 5.3.2列車振動的頻譜分析結果 60 5.3.3不同車速的時域振幅大小 71 5.3.4各車速的頻譜分布 73 5.3.5各車速頻譜分布的比較與共振情形 86 第六章結論與建議 104 6.1結論 104 6.2建議 106 參考文獻 107 附錄A試驗儀器之準備 113 A.1前言 113 A.2試驗儀器 113 附錄B試驗步驟及注意事項 122 B.1前言 122 B.2試驗步驟及注意事項 122 附錄C監測軟體的設定與使用說明 134 C.1前言 134 C.2量測軟體的開啟 134 C.3量測軟體的設定 135 C.3.1軟體的系統設定 136 C.3.2各量測通道的設定 137 C.3.3資料儲存位置的設定 138 C.3.4車速計算的設定 139 C.4量測中的狀況 140 附錄D分析軟體的使用說明 143 D.1前言 143 D.2分析程式的使用說明 143 D.2.1光閘資料的開啟與車速計算 143 D.2.2時間域檔案的開啟與分析 146 D.2.3分析時間未跨檔案的一次自動分析 151 D.2.4分析時間跨檔案的處理 153 D.2.5分析報表的整合 160

    1. ANSI S1.11-1986(ASA 65-1986), “Specifications for Octave-Band and Fractional-Octave-Band Analog and Digital Filters,” Acoustical Society of America, N. Y. (1993).
    2. Bachmann Hi, and Ammann, W., “Vibrations in Structures Induced by Man and Machines,” Structural Engry. Documents, IABSE (1987) .
    3. British Standards Institution, B 6841: Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated Shock (1987).
    4. British Standards Institution, BS 6472: British Standard Guide to Evaluation of Human Exposure to Vibration in Buildings (1Hz to 80 Hz)(1984).
    5. Buzdgan, G., Mihailescu, E., and Rades, M., Vibration Measurement, Martinus Nijhoff Publishers, Romania, 347p (1986) .
    6. Das, B. M, Principles of Soil Dynamics, PWS-KENT, Boston (1993).
    7. Doeding, C. H., Construction Vibrations, Prentice Hall International Limited, London (1996).
    8. German Inst. For Standards, DIN 4150: Vibrations in Civil Engineering-Part2: Effects on People in Buildings (in German), Sept., 1975.
    9. German Inst. For Standards, DIN 4150: Vibrations in civil engineering-Part3: Effects on structures (in German), draft, March 1983.
    10. Gierke H.E. von, and Goldman D.E., “Effects of Transient Vibrations,” in: Shock and Vibration Handbook, (Eds. Harris C.M., Crede C.E.), 2nd ed., McGraw Hill Int., New York (1976).
    11. Gordon, C.G., “Generic Criteria for Vibration Sensitive Equipment, “SPIE, Vol. 1619, pp. 71-75 (1991).
    12. Gordon, C.G., “Vibration Control in Microelectronics Cleanrooms, “ Proceedings of the Conference on Advanced Micro-contamination Control and Ultrapure Manufacturing Cleanroom (1996).
    13. Gutowski, T.G. and Dym, C.L., "Propagation of Ground Vibration: A Review," Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
    14. Heckl, M., Hauck, G., Wettschureck, R., "Structure-Borne Sound and Vibration from Rail Traffic," Journal of Sound and Vibration, Vol. 193, No. 1, pp. 175-184 (1996).
    15. Int. Standard Orgaization, ISO 2631: “Guide for the Evaluation of Human Exposure to Whole-Body Vibration,” ISO Standards Handbook 4: Acoustics, Vibration and Shock, 1st ed., ISO secretariat, Geneva (Switz.), pp. 493-507 (1980).
    16. Japanese Industrial Standard, JIS 28735: Methods of Measurement for Vibration Level (1981).
    17. Japanese Industrial Standard, JIS C1510: Vibration Level Meters (1995).
    18. Kim, D.S., and Lee, J.S., “Propagation and Attenuation Characteristics of Various Ground Vibrations,” Soil Dynamics and Earthquake Engineering, Vol.19, pp. 115-126 (2000).
    19. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
    20. McConnell, K. G., Vibration Testing:Theory and Practice, John Wihey and Sons, INC, New York, 600p. (1995)
    21. Meade, M.L., and Dillon, C.R., Signals and Systems, Chapman & Hall, London (1991).
    22. Nelson, Paul, “On Deterministic Developments of Traffic Stream Models,” Transportation Research Part B: Methodological, Vol. 29B, No. 4, pp. 297-302 (1995).
    23. Raab A., and Widmer R., “Effects of Vibrations on Bulidings-Reference Values in Various Countries (in German),” J. SIA (Schweizer Ingenieur und
    Architekt), Vol. 98, no. 4, pp.45-48 (1980).
    24. Richart, F.E., Jr., Woods, R. D. and Hall, J.R., Jr., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
    25. Ruiten, C.J.M. Van, “A New Method for the Measurement of Wheel/Rail Roughness,” Journal of Sound and Vibration, Vol.120, No. 2, pp. 287-295 (1988).
    26. Smith, J. D., Vibration Measurement and Analysis, Butterworths, London, p1669. (1989)
    27. Steams, S.D., and David, R.A., Signal Processing Algorithms, Prentice- Hall Inc., Englewood Cliffs, N.J. (1988)
    28. Thompson, D.J., “Experimental Analysis of Wave Propagation in Railway Track,” Journal of Sound and Vibration, Vol. 203, No. 5, pp. 867-888 (1997).
    29. Thompson, D.J., “Wheel-Rail Noise Generation, Part I~V: Introduction and Interaction Model,” Journal of Sound and Vibration, Vol. 161, No. 3, pp. 387-482 (1993).
    30. Ungar, E.E., and White, R.W., “Footfall-Induced Vibrations of Floors Supporting Sensitive Equipment,“ Sound and Vibration, Vol. 13, No. 10, pp. 10-13. (1979)
    31. Wiss F., and Parmelee R.A., “Human Perception of Transient Vibrations,” J. Struct. Div., ASCE, Vol. 100, ST 4, pp.773-787 (1974).
    32. 中鼎工程股份有限公司,「南科振動影響評估及對策研擬工作第一階段工作成果報告」,台灣高鐵計畫,台南(1999)。
    33. 中鼎工程股份有限公司,台灣高鐵計畫,南科振動影響評估及對策研擬工作第一階段工作成果報告(全三冊),民國88年4月。
    34. 木村翔,軌道上方建築物固體噪音之控制,第20屆中日工程技術研討會公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,台南,pp. 1-50(1999)。
    35. 朱聖浩,「南科工址高鐵行車振動模擬及電子廠房減振對策」,工程科技通訊第七十三期,第53-58頁(2004)。
    36. 江島淳,「地盤振動的對策」,日文本,古井書店,第240頁(1979)。
    37. 行政院環保署,環境振動量測與管制技術之建立,報告編號:EPA-87-E3L1-03-03,民國87年6月。
    38. 何有忠,高鐵振動、噪音對半導體晶圓廠影響研究,國科會87年度科技行政研究發展報告,民國87年6月。
    39. 何有忠,高鐵微振動對半導體晶圓廠影響之現地量測與分析研究,國科會88年度科技行政研究發展報告,民國88年6月。
    40. 町田富士夫, Dynamic response of concrete railway bridges, Japan (2000).
    41. 科學園區振動標準工作小組歷次會議記錄,民國87年8月~民國88年6月。
    42. 倪勝火,電腦輔助大地工程試驗法與分析,先進出版社,517p(1992)。
    43. 倪勝火,莊明仁,鍾啟泰,「台南科學園區背景及相關振源量測與分析」,第20屆中日工程技術研討會公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,台南,第113-129頁(1999)。
    44. 倪勝火,莊明仁,鍾啟泰,台南科學園區背景及相關振源量測與分析,第20屆中日工程技術研討會公共工程組(10-2),高速鐵路行車引致軌道振動之問題論文集,台南,第13-129頁(1999)。
    45. 倪勝火,槽溝對震波阻隔效應之實驗研究(I):背景及相關震源之振動量測 與調查分析,國科會研究報告NSC87-2622-E006-013,民國88年7月。
    46. 倪勝火,台南科學園區台積六廠廠房微震動量測報告,民國88年7月。
    47. 倪勝火、黃忠信,台南科學園區環境微震監測系統佈設計畫期末報告書,民國89年11月。
    48. 倪勝火,續辦台南園區環境微震監測系統佈設計畫期末報告書,民國90年11月。
    49. 倪勝火,高速鐵路振動量測暨台南科學園區路段環境微振監測站建置之研究期中報告,民國94年8月。
    50. 薛竣丞,「高速鐵路振動量測與數值分析之比較」,碩士論文,國立成功大學土木工程研究所,台南(2005)。
    51. 鍾天欣,「南部科學園區環境振動之研究」,碩士論文,國立成功大學土木工程研究所,台南,(2004)。

    下載圖示 校內:立即公開
    校外:2006-07-14公開
    QR CODE