| 研究生: |
樂文禮 Yue, Wen-Li |
|---|---|
| 論文名稱: |
聚醯亞胺奈米矽氧複合材料
選擇性封裝之研究 Selective Package of Nano-Silica Polyimide Composite Material |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 複合材料 、二氧化矽 、聚醯亞胺 |
| 外文關鍵詞: | Polyimide, Silica, Composites |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前半導體電子產業迅速發展,聚醯亞胺常被廣泛應用為電路板銅基材之絕緣材料以及半導元件內部之絕緣封裝等用途,產業界對於電子用化學品和材料的需求日益提昇,本研究利用溶膠-凝膠法將奈米SiO2粒子導入聚醯亞胺高分子內,以提升其熱穩定性質以及機械性質,並發展出選擇性複合材料封裝技術。
本研究為一利用有機單體(ODA+PMDA)先合成聚醯亞胺酸,再經由矽醇鹽(TEOS)發生溶膠-凝膠反應可以得到一含有Silanol奈米粒子之聚醯亞胺酸/silanol複合材料,加熱脫水之後以形成聚醯亞胺/ SiO2複合材料。但是為了要了解含有奈米SiO2粒子之聚醯亞胺/SiO2複合材料是否其熱穩定性質、機械性質以及絕緣性質是否會比聚醯亞胺高分子更優異,並且聚醯亞胺高分子內奈米SiO2粒子多少含量時會使此改善性質出現最佳值。研究中使用了TGA、TMA以及DMA來測試材料的熱穩定性質,拉力測試機用來測試材料的機械性質,四點探針儀用來測試材料的絕緣性質,XRD用來測試材料的結晶性質,IR用來鑑定材料的官能基,ESCA與EDX用來量測材料的組成以及比例,另外,也使用了SPM以及SEM來觀察材料的表面與斷面形態,以了解其有機/無機界面是否有相分離的情形發生。
由TGA的結果得知,聚醯亞胺熱裂解溫度為625℃,當聚醯亞胺內含有1.5wt%含量之奈米SiO2粒子時,其複合材料的熱裂解溫度會比聚醯亞胺高大約10℃,大約為634~636℃。並且經由TMA的結果,當聚醯亞胺內奈米SiO2粒子的含量由0增加至6.5wt%時,其還未達到玻璃轉化點(Tg)時的熱澎脹係數(αi)會由47.5降低至41.2 μm/m-℃,而玻璃轉移溫度之後的熱澎脹係數(αf)會由1075降低至203.4μm/m-℃。另外,從DMA的結果,也可以得知其聚醯亞胺複合材料的玻璃轉移溫度(Tg)會比聚醯亞胺有些微增加。在這幾種儀器之熱穩定性質的分析之後,可以從實驗結果了解到當在聚醯亞胺內埋入奈米級的SiO2粒子以形成奈米級分散之聚醯亞胺/SiO2複合材料,可以大大地提升材料的熱穩定性質,並且從拉力測試機的測試中發現其聚醯亞胺/SiO2複合材料的楊氏係數(young’s modulus)、極限張應力(ultimate tensile stress)以及破壞伸長率(elongation at fracture)都大於聚醯亞胺。從這些研究結果中,能夠很清楚的了解到當聚醯亞胺內含有奈米SiO2粒子時,不僅僅可以改善其材料的熱性質,材料的機械性質也可以大幅地提升。
另外,本研究也藉由SPM與SEM來觀察材料的表面以及斷面微結構,以及奈米SiO2粒子的顆粒大小和分佈的情形,並從結果中得知奈米SiO2粒子的顆粒大小大約在25~50nm之間,而且能夠均勻地分佈在聚醯亞胺內,並未發生相分離。
本研究室開發電泳沉積選擇性封裝技術,此技術是在電泳沉積的操作過程中,選擇了利用此法製備奈米SiO2粒子含量為1.5wt%之聚醯亞胺/SiO2複合材料,並且改變鍍液中三乙基胺與聚醯亞胺酸/silanol複合高分子中羧酸基(TEA/COOH)之莫耳比以及丙酮與NMP溶劑(Acetone/NMP)之體積比,當TEA/COOH之莫耳比為0.4以及Acetone/NMP之體積比為4.0或是5.0時,其鍍液乳化安定性最佳,除了鍍液內不會有沉澱物產生,而且當固定施加電壓為100V,電泳沉積時間為120sec,單位面積的矽基材,以1.5℃/min的升溫速率從25℃升至350℃的熱處理過程,發現利用這種配方組成所沉積出的絕緣膜的附著力以及表面平整度最佳。因此,以此配方比例作為電泳沉積操作之鍍液組成。
聚醯亞胺酸/silanol複合高分子之沉積量、平均電泳沉積速率以及沉積膜厚,會受到所施加的電壓高低以及電泳沉積時間而有改變。絕緣膜的沉積量會隨著施加電壓以及電泳沉積時間的增加而有一線性增加的趨勢。而在此系統中,平均電泳沉積速率只會隨著施加電壓的改變而有所不同,當施加電壓增加,則平均電泳沉積速率會變快。在此以矽基材作為陽極的系統中,其平均電泳沉積速率並不會因為電泳沉積時間由30sec、60sec、90sec以及120sec的增加而有所改變,而是幾乎接近一定值。這是因為在此系統中,電流(沉積速率)隨著時間下降得很慢,所以當沉積速率取平均值時,四個時間點下的平均電泳沉積率變化不會很大。電泳沉積製備絕緣膜的製程中,控制絕緣膜的厚度是很重要的,其厚度可以由所施加的電壓以及沉積的時間來加以控制,由結果中可以得知沉積膜厚會隨著施加電壓與沉積時間的增加而變厚。另外,也使用SPM以及SEM來觀察複合絕緣膜的微結構,並觀察其利用電泳沉積法所製備的絕緣膜內奈米SiO2粒子的分佈情形,從結果中發現,奈米SiO2粒子在聚醯亞胺內分佈的均勻而且沒有聚集的現象出現。
由本研究之理論分析得知,在PAA/silanol,當施加電位為100 V時,其鍍液中某一成份組成, COOH/TEA 莫耳比(m1)與Acetone/NMP體積比(m2),電流隨時間的關係式,如式(I-1)所示。
(I-1)
其中E為施加電位,m1為TEA/COOH之莫耳比,m2為Acetone/NMP之體積比。
Nowadays, semiconductor or electronic technology grows rapidly. In the mean time, the demand for electronic chemicals or materials also receives great concern. Polyimide is material used as a passivation film on circuit board or inside the semiconductor device, etc. Moreover, the most of new and excellent electronic materials were developed in these recent years. The subject in this study was that nano-silica particles were introduced into the polyimide matrix to promote its thermal and mechanical properties. And then, employed these excellent material in electric industrial by electrophoresis deposition.
In this study, two kinds of monomers- 4,4-diaminodiphenyl ether (ODA) and pyromellitic dianhydride (PMDA) were employed to synthesize the polyamic acid-a precursor of polyimide. Sol-gel method was adopted to prepare purified inorganic glasses precursor which starts with hydrolysis of tetraethoxysilane (TEOS). TEOS-ethanol solution was added to PAA solution by droplet. When the water was removed completely, the PI/silica hybrid films were obtained. In order to understand whether the nano-silica particle was introduced into polymer matrix and enhanced the thermal properties and mechanical strength. We employed a lot of instruments to test its. Thermogravimetric analysis (TGA), thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) were used to test the heat properties. According to the results of the TGA, the thermal decomposition temperature (Td) of polyimide/silica hybrid films was in the range of 634 to 636℃. It was about 10℃ larger than that of pure polyimide. From TMA results, as the temperature was lower than the glass transition temperature (Tg), the thermal expansion coefficient (αi) of polymer was decreased from 47.5μm/m-℃ to 41.2 μm/m-℃ and the silica content ranged from 0 wt% to 6.5 wt%. Contrastively, as the temperature was higher than the Tg, the αf value of polymer was decreased from 1075μm/m-℃ to 203.4μm/m-℃. In addition, from the DMA results that the Tg was slightly increased with the addition of the silica. Besides, the instron mechanical testing instrument was employed to measure mechanical strength. This indicated that the Young’s modulus; ultimate tensile and elongation at fracture of polyimide/silica hybrid films were better than that of the pure polyimide. Comparing to the pure polyimide film, these hybrid films exhibited excellent mechanical and thermal properties: higher thermal decomposition temperatures, higher glass transition temperatures, lower thermal expansion coefficient and an increase in rubbery plateau modulus, etc. On the other hand, the physical properties were investigated as follows: dielectric properties of hybrid films as measured by four-point probe; the crystallization analyzed by X-ray spectrometer (XRD); furthermore, electron spectroscopy for chemical analysis (ESCA) and energy-dispersive spectrometer (EDS) were employed to measure the polyimide and polyimide/silica hybrid films qualitatively and quantitatively.
Besides, the surface and cross-sectional morphology of the materials were observed with a scanning electron microscopy (SEM) and scanning probe microscopy (SPM) to understand that the particle size of silica and the interface of organic/inorganic phases. The silica particles showed a feature of fine and uniform spheres with a diameter in the range from 20 and 50 nm. However, those nanoparticles not only uniformly dispersed in the polymer matrix but also were not agglomerated in each silica contents of the hybrid films.
During the electrophoresis deposition, a precursor of 1.5 wt% silica content of polyimide/silica hybrids, changed the molar ratio of the triethylamine (TEA) and carboxyl group in polyamic acid (TEA/COOH) as well as the volume ratio of acetone and NMP (Acetone/NMP) solvent of the electrobath to observe the environmental condition of the electrobath. It showed that the optimal emulsion stability appearing at TEA/COOH mole ratio is 0.4 and the acetone/NMP volume ratio is 4.0 or 5.0 in which the precipitates did not exist. It’s also found that it showed a good surface uniformity and adhesion on the silicon substrate at the cell voltage, 100 V, electrophoresis took 120 sec and heat treatment with a heating rate of 1.5 ℃/min from 25℃ to 350℃. This composition of the electrobath was prepared to form passivation films by electrophoresis deposition.
The amount of deposition, average deposition rate and film thickness of the polyimide/silica passivation films changed because of the cell voltage and electrophoresis deposition time. In this electrophoresis system, the amount of the passivation films was increased with the increasing cell voltage and deposition time linearly. Meanwhile, the average deposition rate only changed in the cell voltage, it also increase with cell voltage increased, and independent of deposition time. Because of current (deposition rate) slowly decreased with the deposition time. Therefore, the average deposition rate did not change dramatically at four kinds of times, 30sec, 60sec, 90sec and 120sec. In addition, the most important thing about electrophoresis process, which was controlled thickness of the passivation films. The films thickness was controlled by cell voltage and deposition time, which could increase thickness of the passivation films. SEM and SPM also observed the microstructure of the nano-silica particles and the dispersive conditions in the passivation films. The results indicated that the particles were dispersive homogeneously and without agglomeration in the passivation films.
The theoretical analysis of this research shown that for the PAA/silanol nanocomposites system, under applied voltage of 100V and based on composition of the electrolyte which is TEA/COOH mole ratio and Acetone/NMP volume ratio. The relationship between the current and time was shown as Equation (I-1).
(I-1)
where E: Applied voltage. (V); m1: TEA/COOH mole ratio;
m2: Acetone/NMP volume ratio.
Agag, T.; Koga, T.; Takeichi, T., “Studies on thermal and mechanical properties of polyimide-clay nanocomposites” , Polymer, 42, 3399(2001).
Alvino, W. M.; Scala, L. C.,“Electrodeposition of Polymers from Nonaqueous Systems. I Polyimides: Some Deposition Parameters”, J. Appl. Polym. Sci., 27, 341(1982).
Alvino, W. M.; Fuller, T. J.; Scala, L. C., “Electrodeposition Deposition of Polymers. II. Polyimides: A Coulombic Study”, J. Appl. Polym. Sci., 28, 267(1983).
Bard, A. J.; Faulkner, L. R.,“Electrochemical Methods”, John Wiley & Sons, Inc., U.S.A., 11(2001).
Breval, E.; Mulvihill, M. L.; Dougherty, J. P. Newnham, R. E., “Polyimide-Silica Microcomposite Films” , J. Mater. Sci., 27, 3297(1992).
Brekner, M. J.; Feger C.,“Curing Studies of a Polyimide Precursor. II. Polyamic Acid”, J. Polym. Sci.: Part A, 25, 2479(1987).
Brown, J. M.; Curliss, D.; Vaia, R. A., “Thermoset-layered silicate nanocomposites. quaternary ammonium montmorillonite with primary diamine cured epoxies” , Chem. Mater., 12, 3376(2000).
Buchwalter, S. L.“Electrophoretic deposition of polyimide: electrocoating on the cathode”, Proceedings of ACS, 59, 61(1988).
Chen, Y.; Iroh, J. O.,“Electrodeposition of BTDA-ODA-PDA Polyamic Acid Coatings on Carbon Fibers from Nonaqueous Emulsions”, Polym. Eng. Sci., 39, 699(1999).
Chen, X. H.; Gonsalves, K. E., “Synthesis and Properties of an Aluminum Nitride Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process” , J. Mater. Res., 12, 1274(1997).
Christensen, R.,“Analysis of Variance, Design and Regression”, Chapman & Hall, London, 567(1996).
Feger, C.,“Curing of Polyimides”, Polym. Eng. Sci., 29, 347(1989).
Fiet, E. D.; Wilins, C. W.,“Polymer Materials For Electronic Applications”, American Chemical Society Washington D.C.,1 (1982).
Gaw, K.; Suzuki, H.; Jikei, M.; Kakimoto, M.; Imai, Y.,“Synthesis of Various Polyimides Using Tetrahydrofuran/Methanol as Solvent”, Polym. J., 29, 290(1997).
Gupta, S. A.; Gupta, R. K., “Parametric Study of Spin Coating over Topography”, Ind. Eng. Chem. Res., 37, 2223(1998).
Ho, S. M.; Wang, T. H.; Chen, H. L.; Chen, K. M.; Lian, S. M.; Hung, A,“Metallization of Polyimide Film by Wet Process”, J. Appl. Polym. Sci., 51, 1373(1994).
Hu, Q.; Marand, E., “In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol-gel process” , Polymer, 40, 4833(1999).
Huang, W. X.; Wunder, S. L.,“A Dynamic FT-IR Method for Determining the Curing Temperature Ranges of an Acetylene-Terminated Polyisoimide Prepolymer”, J. Appl. Polym. Sci., 59, 511(1996).
Hsiue, G. H.; Liu, Y. L.; Liao, H. H., “Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites” , J. Polym. Sci.: Part A: Polym. Chem., 39, 986 (2001).
Inoue, H.; Sasaki, Y.; Ogawa, T.,“Comparison of One-pot and Two-step Polymerization of Polyimide from BPDA/ODA”, J. Appl. Polym. Sci., 60, 123(1996).
Iroh, I. O.; Yuan, W.,“Formation of Graphite Fiber – Polyimide Prepregs by Electrodeposition”, J. Appl. Polym. Sci., 59, 737(1996).
Khune, G. D.,“Preparation and Properties of Polyimides from Diisocyanates”, J. Macromal. Sci. Chem., 14, 687(1980).
Kitoh, M.; Honda, Y., “Preparation and Tribological Properties of Sputtered Polyimide Film”, Thin Solid Films, 271, 92(1995).
Kim,Y.; Lee, W. K.; Cho, W. J.; Ha, C. S.; Ree, M.; Chang, T., “Morphology of Organic-Inorganic Hybrid Composites in Thin-Films as Multichip Packaging Material” , Polymer International, 43, 129(1997).
Lauver, R. W., J. Polym. Sci., 17, 2529(1979).
Lee, Y. D.; Lu, C. C.; Lee, H. R.,“Synthesis, Characterization, and Properties of Photosensitive Silicon-Containing Copolyimides”, J. Appl. Polym. Sci., 41, 877(1990).
Linda, L; Bidstrup, S. A.,“Processing Effects on Optical Anisotropy in Spin-Coated Polyimide Films”, J. Appl. Polym. Sci., 49, 1277(1993).
Linde, H. G., “Polyamic Acid Interactions at Metal Surfaces”, J. Appl. Polym. Sci., 40, 2049(1990).
Madani, M. M.; Vedage, H. L.; Granata, R. D., “Evaluation of Polyimide Coatings Integrity by Positron Annihilation Lifetime Spectroscopy and Electrochemical Impedance Spectroscopy”, J. Electrochem. Soc., 144, 3293(1997).
Melvin, M.,“Electrophoresis”, John Wiley & Sons, London, 1(1987).
Mercer, F. W.; Mckenzie, M. T., “Fluorinated Poly(Ether Imide Benzoxazole)” , High perform polym, 5, 97(1993).
Mittal, K. L.,“Polyimides: Synthesis, “Characterization and Applications”, Plenum Press, New York, 1(1984).
Miwa, T.; Numata, S.,“A Mechanism Describing Polyamic Acid Solution Viscosity Change on Storage at High Temperature”, Polymer, 30, 893(1989).
Miwa, T.; Tawata, R.; Numata, S., “Relationship between Structure and Adhesion Properties of Aromatic Polyimides”, Polymer, 34, 621(1993).
Morikawa, A.; Iyoku, Y.; Kakimoto, M.; Imai, Y., “Preparation of New Polyimide-Silica Hybrid Materials Via the Sol-Gel Process” , J. Mater. Chem., 2, 679(1992)
Mourey, T. H.; Miller, S. M.; Wesson, J. A.; Long T. E.; Kelts, L. W., “Hydrolysis and Condensation Coupling of (Trimethoxysilyl)Phenyl-Terminated Polystyrene Macromonomers” , Macromolecules, 25, 45(1992).
Nandi, M.; Conklin, J. A.; Salvati, L.; Sen, A., “Molecular-Level Ceramic Polymer Composites .2.1 Synthesis of Polymer-Trapped Silica and Titania Nanoclusters” , Chem. Mater., 3, 201(1991).
Nakamura, S.; Iida, K.; Sawa, G.,“Polyimide films prepared by electrophoretic deposition and their dielectric breakdown”, SPIE, 2780, 72(1997).
Noell, J. L. W.; Wilkes, G. L.; Mohanty, D. K.; Mcgrath, J. E., “The Preparation and Characterization of New Polyether Ketone-Tetraethylorthosilicate Hybrid Glasses by the Sol-Gel Method” , Appl. Polym. Sci., 40, 1177(1990).
Odian, G.,“Principles of Polymerization”, John Wiley & Sons, Inc., US, 8(1991).
Phillips, D. C.,“Electrolytically Formed Polyimide Films and Coatings”, J. Electrochem. Soc., 119, 1645(1972).
Pletcher, D.; Walsh, F. C.,“Industrial Electrochemistry”, Blackie A & P, UK, 441(1993).
Pouchert, C. J.,“The Aldrich Library of FT-IR Spectra”, Aldrich Chemical Company, Inc., U.S.A.,(1985).
Rathore, H. S.; Nguyen, D.,“Copper Metallization for Submicron Integrated Circuit Technology”, An Electrochemical Society Short Course, California, 17 (1998).
Rich, D. C.; Sichel, E. K.; Cebe, P,“Effect of Cure Conditions on Probimide 32 Polyamide-Imide”, J. Appl. Polym. Sci., 63, 1113(1997).
Rothman, L. B., “Properties of Thin Polyimide Films”, J. Electrochem. Soc., 127, 2216(1980).
Russat, J., “Characterization of Polyamic Acid/Polyimide Films in the Nanometric Thickness Range from Spin-deposited
Polyamic Acid”, Surface and Interface Analysis, 11, 414(1988).
Philipp, G.; Schmidt, H., “New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol-Gel Process” , J. Non-cryst. Solids., 63, 283(1984).
Sbramamian, P.; Sriniresam, M.,“Synthesis and Characterization of Polyimides Containing Heterocyclic Units”, J. Polym. Sci. Part A, 26, 1553(1988).
Surivet, F.; Lam, T. M.; Pascault, J. P.; Mai, C., “Organic Inorganic Hybrid Materials .2. Compared Structure of Polydimethylsiloxane and Hydrogenated Polybutadiene Based Ceramers” , Macromolecules, 25, 4309(1992).
Shaw, D. J.,“Electrophoresis”, Academic Press, London, 1(1969).
Skoog, D. A.; Leary, J. J.,“Principles of Instrumental Analysis”, Saunders College Publishing, US, 252(1992).
Sroog, C. E.; Endrey, A. L.; Abramo, S. V.; Berr, C. E.; Edwards, W. M.; Olivier, K. L., “Aromatic Polypyromellitimides from Aromatic Polyamic Acids”, J. Polym. Sci. Part A, 3, 1373(1965).
Stevens, M. P.,“Polymer Chemistry – An Introduction”, Oxford University Press, New York, 57(1990).
Taguchi, G.,“System of Experimental Design”, UNIPUB, New York, 188(1987).
Uebner, M.; Ng, K. M.,“Electrodeposition of Polyimides from Nonaqueous Emulsions”, J. Appl. Polym. Sci., 36, 1525(1988).
Usuki, A.; Kojima, Y.; Kamigaito, O.; Okada, A.; Fukumori, K.; Kojima, Y.; Kurauchi, T., “Synyhesis of Nylon 6-ClayHybrid” , J. Mater. Res., 8, 1179(1992).
Walker, C. C.,“ High Performance Size Exclusion Chromatography of Polyamic Acid”,J. Polym. Sci. Part A, 26, 1649(1988).
Wang, H. H.; Su, C. C.,“The Study on Synthesis of Thermostable Poly(amide-imide) Fibers (II)”, Chinese J. Mat. Sci., 28, 104(1996).
Wang, T. H.; Ho, S. M.; Chen, K. M.; Hung, A., “Temperature Effect on PI/Cu Interface”, J. Appl. Polym. Sci., 47, 1057(1993).
White, L. K., “Planarization Properties of Resist and Polyimide Coatings”, J. Electrochem. Soc., 130, 1543(1983).
Wu, H. S.; Jou, J. H.,“Vapor Deposition Polymerized Nonlinear Optical Polyimide Films-Vapor Deposition Polymerization and Preparation of Poling Electrodes”, Chinese. J. Mat. Sci., 28, 204(1996).
Yanagishita, H.; Nakane, T.; Nozoye, H.; Yoshitome, H., “Preparation of Polyimide Composite Membrane by Chemical Vapor Deposition and Polymerization Technique (CVDP) ”, J. Appl. Polym. Sci., 49, 565(1993).
Yamada, T.; Inanami, R.; Morita, S., “Polyimide Transmitted E-beam excited CF4 Plasma Etching”, Thin Solid Films, 316, 13(1998).
Yang, C. P.; Hsiao, S. H.,“Effects of Various Factors on the Formation of High Molecular Weight Polyamic Acid”, J. App. Polym. Sci., 30, 2883(1985).
林美月,”以電泳沉積方式形成聚醯亞胺電子絕緣膜之研究” ,國立成功大學化學工程研究所碩士論文,41(2000)。
余安平,“電子材料用含奈之聚醯亞胺樹脂的合成與性質研究”,國立成功大學化學工程研究所碩士論文,20(1997)。
林金雀,“聚醯亞胺樹脂在電子相關產業之應用”,化工資訊,8,29(1999)。
林榮堅,曾中英,陳美麗,“用於捲帶式晶粒接合(TAB)封裝的佈局規劃系統”,電腦與通訊,26,24(1994)。
施宣仰,“聚異醯亞胺的製備及性質研究”,國立成功大學化學工程研究所碩士論文,5(1998)。
馬振基,“聚醯亞胺樹脂之合成得性與應用”,塑膠資訊,12,14(1997)。
潘金平,“TAB發展現況”,工業材料,100,90(1995)。
蔡東穎,“可溶性聚醯亞胺之研究”,國立成功大學化學工程研究所碩士論文,5(1998)。
蔡中燕,“奈米級無機材料的發展與應用”,化工資訊(1998)。
郭文法, “溶膠奈米複合材料” ,化工資訊(1998)。