簡易檢索 / 詳目顯示

研究生: 林冠宇
Lin, Guan-Yu
論文名稱: 利用折射係數漸變奈米結構提升氮化鎵發光二極體光析出之研究
Enhanced Light Output of Vertical GaN-Based LEDs with Surface Roughened by Refractive-Index-Matched Si3N4/GaN Nanowire Arrays
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 發光二極體氮化鎵氧化鋅氮化矽折射係數漸變
外文關鍵詞: Light-Emitting Diodes, GaN, ZnO, Si3N4, Graded refractive index
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題係旨在進行一種具折射係數漸變(從氮化鎵折射係數2.5到氮化矽折射係數1.9~2.0再到空氣折射係數1)奈米結構(氮化鎵奈米線)之氮化鎵發光二極體結構之理論模擬元件製備與光電特性分析,以期製備出最佳發光效率之氮化鎵發光二極體。
    本論文研究架構主要分為兩個部分,第一部分以理論模擬分析為主,係透過光學模擬軟體(TracePro)以分析氮化鎵奈米線長度及沉積氮化矽厚度對發光二極體表面之光析出效率影響。由光學模擬軟體顯示,具氮化鎵奈米線於長度800 nm及沉積氮化矽厚度250 nm 的結構,有最佳之光析出效率(與傳統氮化鎵發光二極體比較)。第二部分則著重於實驗之進行,先利用氧化鋅奈米線當作ICP蝕刻之遮罩,製備出表面具氮化鎵奈米結構之發光二極體,再進行PECVD沉積氮化矽薄膜,即完成具折射係數漸變及奈米結構之氮化鎵發光二極體元件。此元件亦藉由掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDS)與積分球…等等儀器,來進行表面形貌、成分、及GaN-基VLED光電特性分析。
    實驗結果顯示,具折射係數漸變及奈米結構之氮化鎵發光二極體元件於注入電流350 mA時,與傳統氮化鎵發光二極體(已進行KOH表面粗化)相較,其光析出效率增加28.7%。此光電特性結果證實本研究提出之新穎結構,確實可藉由表面粗化(氮化鎵奈米結構)及折射係數漸變薄膜(沉積氮化矽)來降低全反射效應與菲涅耳損耗,大幅提升光析出效率。

    In this thesis, the improvement in light output power of vertical light emitting diodes (VLEDs) is studied. The surface-texturing of VLEDs with Si3N4/GaN nanowire arrays (NWAs) which provides a surface roughening scheme with the refractive index varying from 2.5 (GaN) to 1.9~2.0 (Si3N4) to 1 (air) to effectively maximize light extraction efficiency through releasing total internal reflection (TIR) and minimize Fresnel loss was proposed and demonstrated.
    There are two parts comprised in the present thesis. The first part focuses on the simulation and design of Si3N4/GaN NWAs for VLEDs. An optical simulation software, TracePro, was used to simulate the size effects of Si3N4/GaN NWAs (with different lengths and coating thickness) on the light output efficiency of VLEDs. An better design for Si3N4/GaN NWAs with a length of 800 nm and a deposited thickness of 250 nm has been obtained.
    The second part of the present study aims at the preparation of VLEDs with Si3N4/GaN NWAs. With ZnO NWAs as a mask, a dry etching using an inductively coupled plasma (ICP) reactive ion etching (RIE) process was conducted to the n-GaN surface with a depth of 800 nm NWAs. A 250-nm-thick Si3N4 layer with a typical refractive index of 1.9~2.0 was coating on the GaN NW using a plasma-enhanced CVD system. Material analysis including surface morphology, components, and photoelectrical properties of the prepared VLEDs are examined and results are presented and discussed.
    In summary, the effectiveness of refractive-index-matched (RIM) Si3N4/GaN NWAs surface roughening scheme in improving Lop of VLEDs has been demonstrated. A considerable improvement in Lop of proposed VLEDs by 28.7% at 350 mA, as compared with that of the regular VLEDs, has been achieved, which could be attributed to the RIM Si3N4/GaN NWAs structure can effectively release TIR and minimize the Fresnel loss.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章、緒論 1 1-1、高功率GaN基LEDs之發展 1 1-2、研究動機 6 第二章、理論基礎與文獻回顧 8 2-1、發光二極體之原理 8 2-2、發光二極體發光效率與表面粗化技術 10 2-2-1、發光二極體發光效率 11 2-2-2、菲涅耳損耗 12 2-2-3、全反射與表面粗化技術 13 2-3、水熱法合成氧化鋅奈米線 18 2-3-1、氧化鋅基本性質與應用 18 2-3-2、氧化鋅奈米線成長機制 20 第三章、實驗流程、分析方法與設備 23 3-1、實驗流程 23 3-2、實驗材料及設備 24 3-2-1、實驗材料 24 3-2-2、實驗設備 24 第四章、光學模擬分析 32 4-1、TracePro光學模擬軟體簡介 32 4-2、奈米線與氮化矽包覆奈米線之光輸出模擬分析 33 4-2-1、奈米線長度之出光模擬 34 4-2-2、氮化矽包覆奈米線厚度之出光模擬 36 4-3、元件模擬結果與討論 38 第五章、具氮化矽包覆奈米線於LED元件製作 40 5-1、LED元件製備 40 5-2、氮化矽包覆奈米線之製備流程 41 5-3、奈米線及氮化矽包覆奈米線之結構分析(SEM 與 EDS) 42 5-3-1、電子顯微鏡(SEM)分析 42 5-3-2、能量散射光譜儀(EDS) 44 5-4、元件特性量測結果與討論 45 5-4-1、奈米線長度之光電特性 45 5-4-2、氮化矽包覆奈米線厚度之光電特性 47 第六章、結論與未來研究之建議 52 6-1、結論 52 6-2、未來研究之建議 53 參考文獻 54

    [1] S. Nakamura, T. Mukai, and M.Senoh, “High brightness InGaN/AlGaN double heterostructureblue green light emitting diodes,” J. Appl. Phys., vol. 76, pp. 8180-8191, 1994.
    [2] http://www.mem.com.tw/article_content.asp?sn=0908210014
    [3] http://www.ledinside.com.tw/knowledge/20130529-26562.html
    [4] http://www.dcn.com.tw/dcn_ecom/p_trace/950402-950415/01-70.htm
    [5] 工業材料雜誌 No. 220。
    [6] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 20, pp. 1193-1195, 2008.
    [7] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nano-sphere lithography,” Jpn. J. Appl. Phys., vol. 47, no. 8, pp. 6706-6708, 2008.
    [8] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the mirco-and nanoscale,” J. Appl. Phys., vol. 103, pp. 014314, 2008.
    [9] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, “Enhanced performance of vertical GaN-based LEDs with highly reflective p-ohmic contact and periodic indium-zinc oxide nano-wells,” IEEE Photonics Technol. Lett., vol. 22, pp. 338-340, 2010.
    [10] W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, “Use of highly reflective ohmic contact and surface KrF laser roughening to improve light output of vertical GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., pp. 141-142, 2008.
    [11] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I Hsu, W. C. Lee, P. R. Wang and C. R. Tseng, “The preparation of SiO2 nanotubes with controllable inner/outer diameter and length using hydrothermally grown ZnO nanowires as templates,” Jpn. J. Appl. Phys., vol. 49, pp. 04DN10, 2010.
    [12] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Cheng, L. W. Wu, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” IEEE Photonics Technol. Lett., vol. 90, pp. 142115-142118, 2007.
    [13] M. A. Tsai, et al., “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays", IEEE Photonics Technol. Lett., vol. 21, pp. 257-259, 2009.
    [14] R. Windish, et al., “Impact of texture-enhanced transmission of high-efficiency surface-textured light-emitting diodes,” App. Phys. Lett., vol. 79, pp. 2315-2317, 2001.
    [15] H. W. Hunag, et al, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography,” Nanotechnology, vol. 19, pp. 185301-185305, 2008.
    [16] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, and T. K. Ko, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” App. Phys. Lett., vol. 91, pp. 013504-013506, 2007.
    [17] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” App. Phys. Lett., vol. 84, pp. 855-857, 2004.
    [18] 郭浩中,賴芳儀,郭守義,"LED原理與應用",五南圖書出版公司,2009。
    [19] A. Zukauskas, M. S. Shur and R. Caska, “Introduction to solid state lighting,” Wiley, New York, 2002.
    [20] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383–9385, 2003.
    [21] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang and P. H. Wang, “Enhanced Light Output of GaN-Based Vertical-Structured Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser and Chemical Wet Etching", IEEE Photonics Technol. Lett., vol. 22, pp. 1318-1320, 2010.
    [22] C. H. Chao, S. C. Hung, S. C. Shiu, M. T. Kuo, C. H. Chen, C. H. Chang, C. F. Lin , “Influence of Architecture-Controlled GaN Rod Arrays on the Outout Power of GaN LEDs,” IEEE Photonics Technol. Lett., vol. 22, pp. 1847-1849, 2010.
    [23] C. Y. Cho, N. Y. Kim, J. W. Kang, Y. C. Leem, S. H. Hong, W. Lim, S. T. Kim , S. J. Park, “Improved Extraction Efficiency in Blue Light-Emitting Diodes by SiO2-Coated ZnO Nanorod Arrays,” Appl. Phys. Express., vol. 6, no. 4, pp. 042102, 2013.
    [24] L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., vol. 15, no. 5, pp. 464-466, 2003.
    [25] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., vol. 92, pp. 113505-113507, 2008.Peardon’s handbook of crystallographic data, 4795.
    [26] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, vol. 20, no. 15, pp. 1293-1295, 2008
    [27] K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, vol. 210, no. 48, pp. 48-54, 1997.
    [28] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chemical Physics Letters, vol. 365, pp. 300–304, 2002.
    [29] S. Li, H. Zhang, Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, vol. 15, pp. 1428–1432, 2004..
    [30] Peardon’s handbook of crystallographic data, 4795.
    [31] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in in-doped ZnO,” App. Phys. Lett., vol. 78, pp. 475-477, 2001
    [32] Z. K. Tang, G. K. L. Wong and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnOmicrocrystallite thin films,” App. Phys. Lett., vol. 72, no. 25, pp.3270-3272, 1998.
    [33] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao,Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, no. 4, pp. 1003-1009, 2007.
    [34] H. Ohta, M. Orita and M. Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO,” J. Appl. Phys., vol. 89, pp. 5720-5725, 2001.
    [35] Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” Am. Chem. Soc., vol. 123, pp. 3165-3166, 2001.
    [36] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” App. Phys. Lett., vol. 4, no. 5, pp. 89-94, 1964.
    [37] Q. H. Li, Y. X. Liang, Q. Wan and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” App. Phys. Lett., vol. 85, no. 26, pp. 6389-6391, 2004.
    [38] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” App. Phys. Lett., vol. 83, no. 1, pp. 144-146, 2003.
    [39] K. Govender, David S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
    [40] R. W. Nosker and P. Mark, “Polar surfaces of wurtzite and zincblende lattices,” Surf. Sci.,vol. 19, pp. 291-317, 1970.
    [41] Q Ahsanulhaq, A Umar and Y B Hahn1, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanotechnology, vol. 18, pp. 115603-115609, 2007.
    [42] http://www.lambdares.com/

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE