| 研究生: |
陳彥年 Chen, Yen-Nien |
|---|---|
| 論文名稱: |
彈性髓內釘於脛骨骨幹骨折之生物力學分析 Biomechanics of Elastic Stable Intramedullary Nailing in Tibial Diaphyseal Fracture |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 彈性髓內釘 、有限元素分析法 、脛骨骨幹骨折 、固定螺帽 、髓內釘預彎 |
| 外文關鍵詞: | Elastic stable intramedullary nail, Finite element (FE) method, Tibial diaphyseal fracture, End cap, Prebending of the nail |
| 相關次數: | 點閱:102 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
彈性髓內釘適用於一般長骨骨幹骨折,尤其是青少年和兒童之骨幹骨折,因為使用彈性髓內釘來進行骨折之固定可以避免傷害生長板,同時兼具傷口小、不傷害骨頭周圍軟組織、手術時間短、術後恢復快等優點,故為臨床常用之方式。然而,因為彈性髓內釘之作用方式與一般鎖固式髓內釘不同,沒有使用螺釘進行固定,所以固定力相對較弱,對於體重超過50公斤或是年紀大於13歲之患者會有較高之失敗率及併發症之發生。此外,在使用彈性髓內釘進行骨折之固定時,髓內釘在術前之預彎為目前臨床上使用之基本技巧,以增加植入後對骨折固定之整體穩定度,但是目前對於預彎幅度及其做用機制仍不甚清楚。本研究之目的為分析探討不同預彎幅度之彈性髓內釘對於脛骨骨幹骨折固定之影響,包含整體穩定度、骨折斷面之位最大移量、髓內釘末端之位移量等等;此外,有無使用固定螺帽對於整體穩定度的影響亦在本研究中一併探討。
本研究先建立一完整之脛骨實體模型,並在脛骨骨幹建立一橫斷骨折,總共包含三種骨折模式:骨折處位於骨幹之近端、中端和遠端,分別植入三種不同預彎之鈦合金髓內釘,包含預彎幅度等於髓腔寬度以及預彎幅度為髓腔寬度之2和3倍;髓內釘之外徑依據髓腔寬度設定為3.5 mm。固定螺帽之使用則以一拘束等式將髓內釘末端與其周圍之骨頭緊密結合來模擬,使得骨頭與髓內釘末端無法產生任何相對之位移。無使用固定螺帽之模型則讓髓內釘末端可以自由滑動。本研究探討之負載包含150N 之軸向負載、150 N彎曲負載以及10度之扭轉,計算骨折處之最大位移量和髓內釘末端之最大滑動量做為結構穩定度評估判斷之指標。
結果顯示使用固定螺帽可以防止髓內釘末端之滑動,進而防止骨折處之塌陷;而在沒有使用固定螺帽的組別中,則需要預彎幅度達到髓腔寬度之3倍時才能有效降低髓內釘之滑動和阻止骨折處之塌陷。在髓內釘預彎幅度不足同時又沒有使用固定螺帽的情況下承受負載,會造成骨折處塌陷以及髓內釘末端在穿入脛骨處之滑動。
在使用彈性髓內釘進行脛骨骨幹骨折之固定時,建議使用固定螺帽或是增加髓內釘之預彎幅度達到髓腔寬度之3倍以有效防止髓內釘之滑動進而增加結構穩定度同時減少骨折處之位移。對於近端脛骨骨幹骨折,則建議要使用固定螺帽且增加髓內釘預彎幅度達到髓腔寬度之3倍以有效固定骨折。
Elastic stable intramedullary nailing (ESIN) is a treatment strategy for the management of diaphyseal long-bone fractures in adolescents and children, but few studies have investigated the mechanical stability and the stability mechanism of tibial diaphyseal fractures treated with various degrees of prebending of the elastic nails. Therefore, the aim of this study was to compare the mechanical stability, including the gap deformation and nail dropping, of a tibia fracture with various fracture sites and fixed with various degrees of prebending of the elastic nails. The stability mechanism of prebent nails was examined through nail deformation during implantation into the intramedullary canal. Furthermore, the contribution of end caps to stability was taken into consideration in the simulation.
A tibia model based on the CT images of a healthy subject was developed with a transverse fracture at the proximal, middle and distal parts of the diaphysis, and fixed with three degrees of prebending of elastic nails, including those equal to, two times and three times the diameter of the intramedullary canal. The outer diameter of the nail used in the computation was 3.5 mm, and the fractured tibia was fixed with two elastic double C-type nails. Furthermore, the proximal end of each nail was set to free or being tied to the surrounding bone by a constraint equation to simulate with or without using end caps.
The results indicated that using end caps can prevent the fracture gap from collapsing by stopping the ends of the nails from dropping back in all prebending conditions and fracture patterns, and increasing the prebending of the nails to a degree three times the diameter of the canal reduced the gap shortening and the dropping distance of the nail end in those without using end caps under axial compression and bending. Insufficient prebending of the nails and not using end caps caused the gap to collapse and the nail to drop back at the entry point under loading.
Using end caps or increasing the prebending of the nails to three times the diameter of the canal is suggested to stop the nail from dropping back and thus produce a more stable structure, with less gap deformation and less nail dropping, in the management of a simulated tibial diapyhseal fracture by using titanium elastic nails with a double C-shape.
Anastasopoulos, J., D. Petratos, C. Konstantoulakis, C. Plakogiannis and G. Matsinos (2010). "Flexible intramedullary nailing in paediatric femoral shaft fractures." Injury 41(6): 578-582.
Barry, M. and J. M. Paterson (2004). "A flexible intramedullary nails for fractures in children." J Bone Joint Surg Br 86(7): 947-953.
Boresi, A. P., R. J. Schmidt and O. M. Sidebottom (1993). Advanced mechanics of materials. New York, John Wiley & Sons, Inc.
Brighton, C. T. and R. M. Hunt (1997). "Early histologic and ultrastructural changes in microvessels of periosteal callus." J Orthop Trauma 11(4): 244-253.
Canavese, F., L. Marengo, A. Andreacchio, M. Mansour, M. Paonessa, M. Rousset, A. Samba and A. Dimeglio (2016). "Complications of elastic stable intramedullary nailing of femoral shaft fractures in children weighing fifty kilograms (one hundred and ten pounds) and more." Int Orthop.
Celik, A., H. Kovaci, G. Saka and I. Kaymaz (2015). "Numerical investigation of mechanical effects caused by various fixation positions on a new radius intramedullary nail." Comput Methods Biomech Biomed Engin 18(3): 316-324.
Chang, C. H., J. T. Hsu, S. I. Chen, W. P. Chen and G. L. Chang (2002). "The Effect of Material Inhomogeneous for Femoral Finite Element Analysis." Journal of Medical and Biological Engineering 22(3): 121-128.
Chang, C. W., Y. N. Chen, C. T. Li, Y. T. Peng and C. H. Chang (2015). "Role of the compression screw in the dynamic hip-screw system: A finite-element study." Med Eng Phys 37(12): 1174-1179.
Charles Court-Brown, M. M. M., Paul Tornetta (2005). Trauma.
Cheal, E. J., M. Spector and W. C. Hayes (1992). "Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty." J Orthop Res 10(3): 405-422.
Chen, Y. N., C. W. Chang, C. T. Li, C. H. Chang and C. F. Lin (2015). "Finite element analysis of plantar fascia during walking: a quasi-static simulation." Foot Ankle Int 36(1): 90-97.
Chen, Y. N., P. Y. Lee, C. H. Chang, C. W. Chang, Y. H. Ho, C. T. Li and Y. T. Peng (2016). "Computational comparison of tibial diaphyseal fractures fixed with various degrees of prebending of titanium elastic nails and with and without end caps." Injury 47(10): 2339-2346.
Chen, Y. N., P. Y. Lee, C. W. Chang, Y. H. Ho, Y. T. Peng, C. H. Chang and C. T. Li (2016). "Biomechanical investigation of titanium elastic nail prebending for treating diaphyseal long bone fractures." Australas Phys Eng Sci Med.
Court-Brown, C. M. and J. McBirnie (1995). "The epidemiology of tibial fractures." J Bone Joint Surg Br 77(3): 417-421.
Flynn, J. M., T. Hresko, R. A. Reynolds, R. D. Blasier, R. Davidson and J. Kasser (2001). "Titanium elastic nails for pediatric femur fractures: a multicenter study of early results with analysis of complications." J Pediatr Orthop 21(1): 4-8.
Flynn, J. M., L. M. Luedtke, T. J. Ganley, J. Dawson, R. S. Davidson, J. P. Dormans, M. L. Ecker, J. R. Gregg, B. D. Horn and D. S. Drummond (2004). "Comparison of titanium elastic nails with traction and a spica cast to treat femoral fractures in children." J Bone Joint Surg Am 86-A(4): 770-777.
Fricka, K. B., A. T. Mahar, S. S. Lee and P. O. Newton (2004). "Biomechanical analysis of antegrade and retrograde flexible intramedullary nail fixation of pediatric femoral fractures using a synthetic bone model." J Pediatr Orthop 24(2): 167-171.
Gordon, J. E., R. V. Gregush, P. L. Schoenecker, M. B. Dobbs and S. J. Luhmann (2007). "Complications after titanium elastic nailing of pediatric tibial fractures." J Pediatr Orthop 27(4): 442-446.
Huber, R. I., H. W. Keller, P. M. Huber and K. E. Rehm (1996). "Flexible intramedullary nailing as fracture treatment in children." J Pediatr Orthop 16(5): 602-605.
Kaiser, M. M., L. M. Wessel, G. Zachert, C. Stratmann, R. Eggert, N. Gros, M. Schulze-Hessing, B. Kienast and M. Rapp (2011). "Biomechanical analysis of a synthetic femur spiral fracture model: Influence of different materials on the stiffness in flexible intramedullary nailing." Clin Biomech (Bristol, Avon) 26(6): 592-597.
Kaiser, M. M., G. Zachert, R. Wendlandt, R. Eggert, C. Stratmann, N. Gros, M. Schulze-Hessing and M. Rapp (2012). "Increasing stability by pre-bending the nails in elastic stable intramedullary nailing: a biomechanical analysis of a synthetic femoral spiral fracture model." J Bone Joint Surg Br 94(5): 713-718.
Kaiser, M. M., G. Zachert, R. Wendlandt, M. Rapp, R. Eggert, C. Stratmann, L. M. Wessel, A. P. Schulz and B. J. Kienast (2011). "Biomechanical analysis of a synthetic femoral spiral fracture model: Do end caps improve retrograde flexible intramedullary nail fixation?" J Orthop Surg Res 6: 46.
Lee, Y. H., C. J. Chung, C. W. Wang, Y. T. Peng, C. H. Chang, C. H. Chen, Y. N. Chen and C. T. Li (2016). "Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity." Comput Biol Med 71: 35-45.
Linhart, W. E. and A. Roposch (1999). "Elastic stable intramedullary nailing for unstable femoral fractures in children: preliminary results of a new method." J Trauma 47(2): 372-378.
Luhmann, S. J., M. Schootman, P. L. Schoenecker, M. B. Dobbs and J. E. Gordon (2003). "Complications of titanium elastic nails for pediatric femoral shaft fractures." J Pediatr Orthop 23(4): 443-447.
Mahar, A. T., S. S. Lee, F. D. Lalonde, T. Impelluso and P. O. Newton (2004). "Biomechanical comparison of stainless steel and titanium nails for fixation of simulated femoral fractures." J Pediatr Orthop 24(6): 638-641.
Metaizeau, J. P. (2004). "Stable elastic intramedullary nailing for fractures of the femur in children." J Bone Joint Surg Br 86(7): 954-957.
Moore, K. L. (1992). Anatomy. Baltimore, Williams & Wilkins.
Moroz, L. A., F. Launay, M. S. Kocher, P. O. Newton, S. L. Frick, P. D. Sponseller and J. M. Flynn (2006). "Titanium elastic nailing of fractures of the femur in children. Predictors of complications and poor outcome." J Bone Joint Surg Br 88(10): 1361-1366.
Narayanan, U. G., J. E. Hyman, A. M. Wainwright, M. Rang and B. A. Alman (2004). "Complications of elastic stable intramedullary nail fixation of pediatric femoral fractures, and how to avoid them." J Pediatr Orthop 24(4): 363-369.
O'Brien, T., D. S. Weisman, P. Ronchetti, C. P. Piller and M. Maloney (2004). "Flexible titanium nailing for the treatment of the unstable pediatric tibial fracture." J Pediatr Orthop 24(6): 601-609.
Perez, A., A. Mahar, C. Negus, P. Newton and T. Impelluso (2008). "A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures." Med Eng Phys 30(6): 755-760.
Robert W. Bucholz, J. D. H., Charles M. Court-Brown (2006). Fractures in Adults, Lippincott Williams & Wilkins.
Sarkar, S., R. Bandyopadhyay and A. Mukherjee (2013). "Titanium elastic nail - Complications in the treatment of paediatric diaphyseal fracture of femur [corrected]." Open Orthop J 7: 12-17.
Shirazi-Adl, A., M. Dammak and G. Paiement (1993). "Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants." J Biomed Mater Res 27(2): 167-175.
Sink, E. L., J. Gralla and M. Repine (2005). "Complications of pediatric femur fractures treated with titanium elastic nails: a comparison of fracture types." J Pediatr Orthop 25(5): 577-580.
Slongo, T. F. (2005). "Complications and failures of the ESIN technique." Injury 36 Suppl 1: A78-85.
Soleimanpour, J., J. Ganjpour, S. Rouhani and M. Goldust (2013). "Comparison of titanium elastic nails with traction and spica cast in treatment of children's femoral shaft fractures." Pak J Biol Sci 16(8): 391-395.
Wall, E. J., V. Jain, V. Vora, C. T. Mehlman and A. H. Crawford (2008). "Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures." J Bone Joint Surg Am 90(6): 1305-1313.