| 研究生: |
黃俊憲 Huang, Chun-Hsien |
|---|---|
| 論文名稱: |
多孔隙SiOCH低介電材料之研究 The Studies of Porous Low-k SiOCH Materials |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 紫外線熱處理 、電漿後處理 、多孔性介電薄膜 、時間延遲 |
| 外文關鍵詞: | UV curing process, Plasma post-treatments, Signal propagation delays, Porous low-k film |
| 相關次數: | 點閱:131 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著積體電路元件尺寸的微縮,導致內層連線的時間延遲比整個元件的時間延遲更加嚴重,更進一步引發內層導線串音和功率消耗過高的問題,因此積體電路元件採用銅導線(低阻值)及低介電常數材料(低電容)來降低時間延遲(RC Delay)效應的問題。現今為了降低多層導線內絕緣體的介電常數,尤以導入多孔性的結構為最有效,但過多的孔隙結構反而使得此種低介電材料成為組織鬆散,機械強度不理想的結構,將不利於積體電路元件整合製程及其封裝工程進行,這些後續的製程外力可輕易跨越介電材料之降伏強度,或本身多孔隙結構過於鬆散,而容易形成電路的導通路徑,致使積體電路元件遭受破壞。因此,本論文將針對兩種不同的低介電常數的材料隨著製程條件的改變時,研究其機械和電氣特性的變化,並成長出符合元件之基本特性要求的機械降伏強度、低介電和低漏電流特性之材料。也基於製程整合問題的考量,本研究並進一步探討低介電薄膜沉積後的製程處理,使其得能應用在奈米銅導線元件上。
本論文第一種低介電材料是利用3MS和氧氣混合氣體再輔以電漿輔助化學氣相沈積法,沈積多孔隙碳氫化矽氧薄膜於矽基材上,以改變腔體氣壓的大小對薄膜結構、介電性質和機械性質之影響進行研究,在其最佳化的製程條件下,並進一步利用O2/CO及NH3電漿後處理的製程,於此種低介電材料表面型成一層保護層,以抵抗外力對低介電材料的破壞。其結果顯示: 在改變壓力之最佳製程條件為2.5 Torr的大氣壓力可得薄膜之楊格係數為19.26 GPa、硬度為3.12 GPa、介電常數為 3.0、漏電流為 6.455×10-9 A/cm2,可將其應用於65奈米及其以上元件之製程。而O2/CO及NH3電漿後處理之製程,將分別於薄膜表面型成SiOx及SiON保護層,以抵抗大氣中或後續製程中水氣的侵襲。
本論文中的第二種低介電材料則是利用DEMS、氧氣以及PROGEN混合氣體輔以電漿輔助化學氣相沈積法,沈積多孔隙碳氫化矽氧薄膜於矽基材上,並以紫外線熱處理移除PROGEN形成多孔性結構並且進行結構改良,以強化低介電材料機械特性,紫外線熱處理為目前多孔隙低介電材料製程所採用,也是積體電路製程較新穎的觀念。此部份研究主要是探討45奈米積體電路元件中後段內層導體(SiOCH)低介電常數薄膜之紫外線熱處理時間和溫度對薄膜特性的影響。低介電常數薄膜(SiOCH)經過不同時間和溫度的紫外線熱處理後,利用傅利葉紅外線光譜分析經紫外線熱處理後薄膜的鍵結型態;經紫外線熱處理後製作成金屬絕緣體半導體結構薄膜,利用HP-428儀器分析其介電性質。
其結果顯示,材料結構方面,薄膜經紫外線熱處理後,隨紫外線熱處理時間和溫度的增加,薄膜材料結構改變,(CHx / Si-O)的波鋒比(peak area ratio) 與 (Si-CH3 / Si-O) 的波鋒比(peak area ratio)逐漸減少。薄膜性質方面,紫外線熱處理時間的增加,孔隙度亦隨之增加。介電性質方面,適當的紫外線熱處理時間,可以使薄膜介電常數急速降低,而過長的紫外線熱處理時間,將導致薄膜介電常數的上升。機械性質方面,隨著紫外線熱處理時間的增加,薄膜楊格係數、硬度也隨之增加。本研究中利用固定350奈米厚度的薄膜在紫外線熱處理其最佳化的參數是溫度為400°C、時間為8分鐘,使得多孔性介電薄膜獲得較低的介電常數(2.57)和符合元件之機械特性(楊格係數為8.262GPa)可將之應用於45奈米及以下積體電路元件之內層導線之導體。
As ultra large scale integrated (ULSI) circuits shrink to sub-micron dimensions, the interconnect widths become smaller; therefore, signal propagation delays become a dominant part of the overall chip delay. Crosstalk and power consumption greatly increase due to non-compatibility of the parasitic capacitance of interlayer dielectrics and the resistance of wiring metals. To solve this issue, two materials introduced into the multi-layer interconnection of the integrated circuit (IC) device. One is low dielectric material (low capacity), and the other one is copper contact line (low resistitivity).
In this thesis, we focus on investigating the dielectric materials in interconnection of IC devices. There are two ways to introduce porosity into low-k dielectrics to reduce the dielectric constant in current interconnections during semiconductor fabrication. One approach is to introduce terminating bonds, such as Si-H or Si-(Me)n (where Me is represented as a methyl group), incorporated into the Si-O backbone, named “constitutive porosity”, which is formed through self-organization of the materials. The porosity of this low-k material is relatively low, with pore sizes of about 10 A° in diameter. The other approach is a novel and advanced technology that uses a hybrid material, consisting of a Si-O containing matrix and a sacrificial organic porogen (ie. a pore generating material), co-deposited to form a dielectric film; the porogen is then thermally decomposed and removed, thus creating porosity in the film. This porosity is formed subtractively, named “subtractive porosity”. Subtractive porous materials are formed through the selective removal of parts of the volume of the material. The porosity in such material is relatively high, and the pore sizes are about several nanometers in diameter.
The first kind of the low-k dielectrics in our research is so-called “constitutive porosity” low-k materials. In this section, we focused on the studies of properties of a PECVD grown SiOCH film with varying the deposition pressures. Moreover, to study the properties of a PECVD SiOCH films with or without a plasma treatment after optimaling a PECVD SiOCH dielectric. The uses of O2/CO mixture gas and NH3 plasma post-treatment are employed on the as-deposited SiOCH films. These plasma treatments are applied to enhance the resistance of moisture absorption in an as-deposited SiOCH film. The results show the promising properties of such a low-k material as deposition pressure of 2.5 Torr, with a leakage current of 6.455×10-9A/cm2, mechanical strength as in Young’s modulus of 19.26 GPa and hardness of 3.12 GPa, can be expected to be successfully developed. The formation of a SiOx interfacial capping layer using an O2/CO gas ratio of 0.75 and a oxy-nitride film using NH3 gas of 60 sccm on the hybrid-type low k dielectric material to increase the ability of moisture resistance on the SiOCH film with nearly the same dielectric properties can be used in ULSI application
The second kind of the low-k dielectrics in our investigation is so-called “subtractive porosity” low-k materials.Ultra violet (UV) curing process is developed for the optimal processing of such a porous low dielectric material. It’s the brand new concept to apply the UV curing process on copper/low-k interconnects in IC technology. We have made a systematic research of the UV curing process on the SiOCH film and optimized the parameters of the thin film processing. In our work, the effect of the UV curing time and temperature on the thin film of the low dielectric material, SiOCH, is extensively investigated in the Cu/low-k interconnect processing. The bonding of the SiOCH film is characterized by FTIR. The FTIR results show that peak area ratio of CHx/Si-O and Si-CH3/Si-O decrease with the increment of the time and temperature of the UV curing process. The dielectric constant is examined with a metal-insulator- semiconductor (MIS) structure. The dielectric constant will decrease drastically with the time of the UV curing in the first, however, it will increase for longer curing time. Hence, an optimization of the UV curing temperature of 400°C and the time of 8 min is necessary for such a porogen-low-k material. The results show a high performance porous low-k film of k=2.57 and Young’s modulus of 8 GPa, now is developed to improve the mechanical properties of this porous low-k film.
[1] S. P. Murarka,”Low Dielectric Constant Materials for Interlayer Dielectric Applications”, Solid State Technology, Vol. 39, No.3, pp. 83-87, 1996.
[2] L. Peters,“Pursuing the Perfect Low-k Dielectric”, Semicond. Int., pp.64-69, September 1998.
[3] International Technology Roadmap for Semiconductor, ITRS Conference, Hsinchu, Taiwan, 2003.
[4] S. P. Muraka, I. V. Verner and R. J. Gutmann, Copper-Fundamental Mechanisms for Microelectronic Application (John Wiley & Sons, New York, 2000) chap.1.
[5] R. Hossain, F. Viglione, M. Cavalli,“Design fast on-chip interconnects for deep submicrometer technologies”, IEEE Trans. Vol. 11, No. 2, pp.276-280, 2003.
[6] J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micro CMOS”, IEEE Symp. VLSI Technol. Digest, pp. 59-60, 1994.
[7] T. Sakurai,” Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs” IEEE Trans. on Electron Devices, Vol. 40, No. 1, pp. 118-124, 1993.
[8] J. Torres, “Cu dual damascene for advanced metallization (0.18 um and beyond)”, IEEE Int. Interconnect Tech. Conf., pp. 166-168, 1998.
[9] E. Korczynski, “Low k dielectric costs for dual-damascene integration”, Solid State Technol. Vol. 42, pp. 43-48, 1999.
[10] K. Endo, K. Shinoda, and T. Tatsumi,“Plasma deposition of low-dielectric-constant fluorinated amorphous carbon” ,J. Appl. Phys. Vol. 86, pp. 2739-2746,1999.
[11] K. Kim, D. H. Kwon, G. Nallapati, and G. S. Lee, “Characterization of low dielectric constant plasma enhanced chemical vapor deposition fluorinated silicon oxide films as intermetal dielectric materials”, J. Vac. Sci. Technol. A, Vol.16 No. 3, pp.1509-1513,1998.
[12] Yoon-Hae Kim, Seok-Kiu Lee , and Hyeong Joon Kim, “Low-k Si–O–C–H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, J. Vac. Sci. Technol. A, Vol.18, No. 4, pp.1216-1219, 2000.
[13] O.Louveaa, D. Louis, M. Assous, R. Blamc, P. Brun, S. Lamy, and E. Lajoinie, “Challenge of ashing and cleaning on SiOC-H dielectric: characterization and main issues”, Microelectron. Eng. Vol.61/62, pp.867-874, 2002.
[14] Y. Quan, J. Joo, S.Yeo, and D. Jung “Effects of Post-Deposition Heat Treatment on the Properties of Low Dielectric Constant Plasma Polymerized Decahydronaphthalene Thin Films Deposited by Plasma-Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Vol. 39, pp.L1324-1326, 2000.
[15] S. I. Nakao, J. Ushio, T. Ohno, T. Hamada, Y. Kamigaki, M. Kato, K. Yoneda, S. Kondo, N. Kobuyashi., “UV/EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Materials”,IEEE International Interconnect Technology Conference, PP.66-68,2006.
[16] P. Verdonck, D. D. Roest, S. Kaneko, R. Caluwaerts, N. Tsuji, K. Matsushita, N. Kemeling, Y. Travaly, H. Sprey, M. Schaekers, and G. Beyer,”Characterization and Optimazation of Porogen-based PECVD deposited extreme low-k materials as a function of UV-cure time”, Surf. Coat. Technol., Vol. 201, pp. 9264-9268, 2007.
[17] A. Grill and D. Neumalyer: “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization”, J. Appl. Phys. Vol. 94, pp.6697-6708,2003.
[18] S. Lee, J. Yang, S. Yeo, J. Lee, D. Jung, J. H. Boo, H. Kim and H. Chae., “Effect of Annealing Temperature on Dielectric Constant and Bonding Structure of Low-k SiCOH Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Vol. 46, pp 536-541, 2007.
[19] Y. Shioya, H. Shimoda, K. Maeda, T. Ohdaira, R. Suzuki and Y. Seino, “Low-k SiOCH Film Deposited by Plasma-Enhanced Chemical Vapor Deposition Using Hexamethyldisiloxane and Water Vapor”, Jpn. J. Appl. Phys. Vol. 44 , pp. 3879-3884, 2005.
[20] C. H. Huang, N. F. Wang, Y. Z. Tsai, C. C. Liu, C. I. Hung, and M. P. Houng, " The Formation of a SiOx Interfacial Layer on Low-K SiOCH Materials Fabricated in ULSI Application ", Materials Chemistry and Physics, Vol 110 (2) , pp.299-302, 2008.
[21] J. Ushio, T. Ohno, T. Hamada, S. I. Nakao, K. Yoneda, M. Kato, and N. Kobayashi, “Ultraviolet-Curing Mechanism of Porous-SiOC”, Jpn. J. Appl. Phys. Vol. 46, pp. L405-407, 2007.
[22] M. Oneill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner, E. Karwacki, “Low-k Material by Design”, Semicond. Int., Vol. 25, pp93-97, 2002.
[23] International Technology Roadmap for Semiconductor, ITRS, Semiconductor Industry Association, San Jose, CA, 2004
[24] C. L. Cornec, F. Ciaramella, V. Jousseaume, P. Leduc, A. Zenasni, G. Passemard, “K value improvement of ULK dielectrics by wet activation” , Microelectronic Eng. Vol. 83, pp.2122-2125, 2006.
[25] V. Jousseaume, L. Favennec, A. Zenasni, and G. Passemard, “Plasma-enhanced- chemical-vapor-deposited ultralow k for a postintegration porogen removal approach”, Appl. Phys. Lett. Vol. 88. pp.182908-182912 , 2006.
[26] D. Shamiryan, T. Abell, F. Iacopi, and K. Maex.,”Low-k dielectric materials”, Mat.Today, pp.34-39,2004.
[27] C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons, New York, 1954) chap.6, pp95-97.
[28] S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., Vol. 83, pp. 2172-2177, 1998
[29] S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada and H. Komiyama, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl. Phys. Lett. Vol. 68, pp. 832-834, 1996
[30] S.R. Wilson et al., “Handbook of Multilevel Metallization for Integrated Circuits”, Noyes Publications, Park Ridge, NJ, 1993, chap.1, pp17.
[31] H. H. Chen and C. K. Wong, “Wiring and Crosstalk Avoidance in Multi-Chip Module Design”, Proc. of Custom Integrated Circuits Conference, pp. 28.6.1-28.6.4, 1992.
[32] C. H. Lee, C.M. Chung, W.Y. Fu and T.M. Hsieh. “Channel Routing Crosstalk Minimization”, in the Chung Yuan Journal, pp. 103-109, Vol. 29, No.1, 2001.
[33] Z. C. Wu, “Physical and Electrical Characteristics of F- and C-Doped Low Dielectric Constant Chemical Vapor Deposited Oxides”, J. Electrochem. Soc. Vol. 148, pp. F115-119, 2001.
[34] K. Maex, M. R. Baklanov, D. Shamiryan, D. Shamiryan, F. Iacopi, S. H. Brongersma and Z. S. Yanovitskaya, “Low Dielectric Constant Materials for Microelectrics”, Journal of Applied Physics, Vol. 93, No. 11, pp.8793-8841,2003.
[35] T. K. S. Wong, B. Liu, B. Narayanan, V. Ligatchev and R. Kumar,” Investigation of deposition temperature effect on properties of PECVD SiOCH low-k films”, Thin Solid Films, Vol. 462-463, pp. 156-160, 2004.
[36] L. Peter, Semiconductor International, Cover Story, p.64, September 1998.
[37] S. M. Han and E. S. Aydil, “Structure and Chemical Composition of Fluorinated SiO2 Films Deposited Using SiF4/O2 Plasmas” J. Vac.Sci. Technol. A, Vol.15, No. 6, pp.2893- 2897, Nov/Dec 1997.
[38] S. Lee, J. W. Park, “Effect of fluorine on dielectric properties of SiOF films” Journal of Applied Physics, Vol 80, No. 9, pp.123-127, 1999.
[39] T. Yoda , K. Fujita, H. Miyajima, R. Nakata, Y. Nishyama, Y. Nakasaki and N. H ayasaka, “High-Performance SiOF Films Fabricated Using a Dual-Frequency- Plasma Chemical Vapor Deposition System” Jpn. J. Appl. Phys. Vol. 43, No.9A, pp.5984-5989, 2004.
[40] J. Wu, Y. L. Wang, C. P. Liu, S. C. Chang, C. T. Kuo and C. Ay,“Study on precipitations of fluorine-doped silicon oxide“,Thin Solid Films, Vol.447-448 , pp. 599-604, 2004.
[41] W. C. Hsiao, C. P. Liu and Y. L. Wang,“ Characterization of Sputter-induced Temperature effect in Fluorine Doped SiO2 Film Deposition by High-density Plasma Chemical Vapor Deposition“, Thin Solid Films, Vol. 498, pp.20-24, 2006.
[42] Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim,Y. Lee, “Infrared Spectroscopy Study of Low-dielectric-constant Fluorine-incorporated and Carbon-incorporated Silicon Oxide Films” Journal of Applied Physics, Vol 90,No.7, pp.3367-3370, October 2001
[43] M. K. Bhan, J. Huang and D. Cheung, “ Deposition of Stable, Low k and High Deposition Rate SiF4-doped TEOS Fluorinated Silicon Dioxide (SiOF) Films”, Thin Solid Films Vol. 308-309 , pp.507-511,1997.
[44] J. Wu, Y. L. Wang, C.T. Kuo,“Pecipates formation and its impact on the structure of plasma-deposited fluorinated silicon oxide films“ Surf. Coat. Technol Vol. 200 pp. 3303- 3308, 2006
[45] J. Wu, Y. L. Wang and C. T. Kuo,“Precipitates formation and its impact on the structure of plasma-deposited fluorinated silicon oxide films“, J. Phys. Chem. Solids,Vol. 69, pp.555-559, 2008.
[46] Y. C. Quan, J. Joo, S. Yeo and D. Jung, “ Effects of Deposition Pressure on the Properties of a Low-dielectric Constant Cyclohexane-based Plasma Polymer”, Jpn. J. Appl. Phys. Vol. 39 Part 1, No. 3A, pp. 1325-1326, 2000.
[47] Y. J. Mei, T. C. Chang, S. J. Chang, F. M. Pan, M. S. K. Chen, A. Tuan, S. Chou and C. Y. Chang, “Stabilizing dielectric constant of fluorine-doped SiO2 film by N2O and NH3 plasma post-treatment “ Thin Solid Films, Vol. 308-309, pp.501-506, 1997.
[48] D. J. Monk and D. S. Soane, “Polymers for Electronics and Photonic Applications”, Academic Press, Boston, 1993.
[49] C. S. Yang, K. S. Oh, J. Y. Ryu, D. C. Kim, J. S. Yong, C. K. Choi, H. J. Lee, S. H. Um, H. Y. Chang, “A study on the formation and characteristics of the Si---O---C---H composite thin films with low dielectric constant for advanced semiconductor devices”, Thin Solid Films, Vol. 390, pp.113- 118,2001.
[50] M. R. Wang, Rusli, M. B. Yu, N. Babu, C.Y. Li and Rakesh,” Low Dielectric Constant Films Prepared by Plasma-enhanced Chemical Vapor Deposition From Trimethylsilane”, Thin Solid Films, Vol. 462-463, pp. 219-222, 2004.
[51] Y. L. Cheng, Y. L. Wang, J. K. Lan, H. C. Chen, J. H. Lin, Y. L. Wu, P. T. Liu, Y. C. Wu and F. S. Feng,“Effect of Carrier Gas on The Structure and Electrical Properties of Low Dielectric Constant SiOCH Films Using Trimethylsilane Prepared by Plasma Enhanced Chemical Vapor Deposition“, Thin Solid Films Vol. 469-470, pp.178-183, 2004.
[52]. V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaund, M. Bardet, J. P. Simon, A. Humbert: Comparison Between E-beam and Ultraviolet Curing to Perform Porous a-SiOC:H , J. Electrochem. Soc. Vol. 154, Issue 5, pp. G103-109, 2007.
[53] L. Favennec, V. Jousseaume, G. Gerbaud, A. Zenasni, G. Passemard, “Ultralow k using a plasma enhanced chemical vapor deposition porogen approach: Matrix structure and porogen loading influences.” J. Appl. Phys. Vol.102, pp.064107-064116, 2007.
[54] F. Gualandris, L. Masini, A. Borghesi,” A comparative evaluation of spin-on-glass cure by FTIR technique”, J. Electron. Mater. Vol. 20, pp. 299-304,1991.
[55] A. Grill, V. Patel, “Interaction of Hydrogen Plasma with Extreme Low-k SiCOH Dielectrics”, J. Electrochem. Soc. , Vol.151, No.6 , pp. F133-F134, 2004.
[56] R. Tsu, J. W. McPherson and W. R. McKee,“Leakage and breadown reliability issues associated with low-k dielectrics in dual-damascene copper“, in Proc. Of International Reliability Physics Symposium, pp. 348-353, 2000.
[57] R. Gonella, P. Motte and J. Torres, “Time-dependent-dielectric breakdown used to Reliability assess copper containation imapct on inter-level dielectric reliability“, International Workshop Final Report, pp. 189-190, 2000.
[58] J. D. McBrayer, R. M. Swanson and T. W. Sigmon,“Diffusion of Metals in Silicon Dioxide“, Journal of Electrochemical Society, Vol. 133, No. 6, pp.1242-1246, 1986.
[59] Z. C. Wu, C. Chiang, W. Wu, M. Chen, S. Jeng, L. Li, S. Jang, C. Yu and M. Liang,“ Leakage mechanism in copper damascene structure with methylsilane-doped low-k CVD oxide as intermetal dielectric“, IEEE Electron Device Letters, pp.263-265, 2001.
[60] S. Wong, A. Koke, J. Wetzel, P. Townsend, R. Vrtis and M. Zussman,“Electrical reliability of Cu and Low-k Dielectric integration“, in MRS Spring Meeting, pp. 1-11,1998.
[61] S. Kim, T. Cho and P. Ho,“ Leakage current degradation and carrier conduction mechanisms for Cu/BCB damascence process under bias-stress temperature“, in Proc. of International Reliability Physics Symposium, pp. 277-282, 1999.
[62] J. Noguchi,“TDDB improvement in Cu metallization under bias stress“, in Proc. of International Reliability Physics Symposium, pp. 339-343,2000.
[63] G. B. Alers, G. Harm and T. S. D. Felipe,“ Wafer level testing of inter-line reliability in copper/low-k structures“, International Reliability Workshop Final Report, pp. 83-86,2001.
[64].R. Suzki, T. Ohdaira, Y. Shioya, T. Ishimaru,” Pore Characteristics of Low-Dielectric-Constant Films Grown by Plasma-Enhanced Chemical Vapor Deposition Studied by Positron Annihilation Lifetime Spectroscopy”
Jpn. J. Appl. Phys. Vol. pp. L 414-416, 2001.
[65] Q. Wu, K. K. Gleason,”Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, J. Vac. Sci. Technol., A, Vol.21 No. 2, pp.388-393, 2003.
[66] 2001 International Technology Roadmap for Semiconductors, Interconnects.
[67] S. Z. Yu, T. K. S. Wong, K. Pita, X. Hu, “Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric”, J. Vac. Sci. Technol. B ,Vol. 20 No. 5 , pp.2036-2042, 2002.
[68] Y. Toivola, J. Thurn,R. F. Cook, “Structural, Electrical, and Mechanical Properties Development during Curing of Low-k Hydrogen Silsesquioxane Films”, J. Electrochem. Soc.Vol 149, No. 3, pp.F9-F17, 2002.
[69] S. Y. Jing, C. K. Choi, Heon-Ju Lee, “A Study on the Formation and Characteristics of the Organic-inorganic material with low dielectric constant deposited by High Density Plasma Chemical Vapor”, J. Korean Phys. Soc. Vol. 39 , pp. S302-305, 2001.
[70] C. S. Yang , K. S. Oh, C. K. Choi,”A studty on the Dielectric Components of SiOCH Composited Films Deposited by Using BTMSM/02-ICPCVD”. J. Korean Phys. Soc., Vol. 44, pp.1102-1107, 2004.
[71] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L.S. Wong, P. D.
Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. Vol. 148 ,No. 7, pp. F148-F153,2001.
[72] R. Navamathavan, K. S. Oh, S. Y. Chang, S. H. Kim, Y. J. Jang, A. S. Jung, H. J. Lee, K. M. Lee, C. K. Choi, “Electrical Properties of Low-Dielectric-Constant SiOC(–H) Films Prepared by Plasma-Enhanced Chemical Vapor Deposition from Methyltriethoxysilane and O2 “, Jpn. J. Appl. Phys. Vol. 45, pp. 8435-8439, 2006..
[73] J. Thurn, R. F. Cook, “Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films”, J. Appl. Phys. Vol. 91, pp. 1988-1993, 2002.
[74] J. K. Cramer, S. P. Murarka, “Stress-temperature behavior of electron cyclotron resonance oxides and their correlation to hydrogenous species concentration”, J. Appl. Phys. Vol. 77, pp. 3048-3056,1995.
[75] H. J. Kim, Q. Shao, Y. H. Kim, “Characterization of low-dielectric-constant SiOC thin films deposited by PECVD for interlayer dielectrics of multilevel interconnection” Surf. Coat. Technol. Vol. 171, pp.39-45, 2003.
[76] F. Iacopi, Y. Travaly, B. Eyckens, C. Waldfried, T. Abell, E.P. Guyer, D.M. Gage, R.H. Dauskardt, T. Sajavaara, K. Houthoofd, P. Grabet, P. Jacobs, K. Maex, “Short- Ranged Structural Rearrangement and Enhancement of Mechanical Properties of Organosilicate Glasses Induced by Ultraviolet Radiation,” Journal of Applied Physics,, pp.053511-0535113.
[77] C. Rau, W. Kulisch, “Mechanisms of plasma polymerization of various silico-organic monomers”, Thin Solid Films Vol.249, pp.28-37, 1994.
[78] P. G. Pai, S. S. Chao, Y. Takagi, G. Lucovsky, “Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition“, J. Vac. Sci. Technol., A,Vol. 4, No. 3, pp. 689-694,1986.
[79] M. J. Loboda, C. M. Grove, R. F. Schneider, ”Properties of a-SiOx:H Thin Films Deposited from Hydrogen Silsesquioxane Resins’, J. Electrochem. Soc. Vol.145, No.8 , pp.2861-2866,1998.
[80] D. A. Neumayer, ”Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition.” J. Appl. Phys. Vol. 90 pp.1801-1809, 2001.
[81] F. Ciaramella, V. Jousseaume, S. Maitrejean, M. Verdier, B. Remiat, A. Zenasni, G. Passemard, “Crosslinking impact of mesoporous MSQ films used in microelectronic interconnections on mechanical properties”, Thin Solid Films, Vol. 495, pp.124-129 , 2006.
[82] T. C. Wang, T. E. Hsieh, M. T. Wang, D. S. Su, C. H. Chang, Y. L. Wang, Y. M. Lee, “Stress Migration and Electromigration Improvement for Copper Dual Damascene Interconnection”, J. Electrochem. Soc.Vol.152, No. 1, G45-G49,2005.
[83] J. T. Luo, W. F. Wu, H. C. Wen, B. Z. Wan, Y. M. Chang, C. P. Chou, J. M. Chen, W. N. Chen, “The roles of hydrophobic group on the surface of ultra low dielectric constant porous silica film during thermal treatment”,Thin Solid Films, Vol. 515, pp.7275-7280, 2007.
[84] N. Tajima, T. Ohno, T. Hamada, K. Yoneda, N. Kobayashi, S. Hasaka, M. Inoue, “Molecular modeling of low-k films of carbon-doped silicon oxides for theoretical investigations of the mechanical and dielectric properties” ,Appl. Phys. Lett. Vol. 89, pp.061907-061909, 2006.
[85] N. Biswas, X. Wang, S. Gangopadhay, “Electrical properties of amorphous silicon carbide films”, Appl. Phys. Lett. Vol. 80, pp.3439-3441 , 2002.
[86] S. P. Murarka, I. V. Verner, R. J. Gutmann, Copper Fundamental Mechanisms for Microelectronic Applications, John Wiley & Sons , New York, 2000, chap. 1
[87] T. Sakurai, “High-speed/high-density logic circuit design”, VLSI Technology, Systems, and Applications, 1993. Proceedings of Technical Papers. 1993 International Symposium, pp. 223-226, 1993.
[88] E. T. Ogawa, J. Kim, G. S. Haase, H. C. Mogul and J. W. McPherson,” Leakage, Breakdown and TDDB characteristics of porous low-k silica-based interconnect dielectrics”, in Proc. Of International Reliability Physics Symposium, pp.166-171, 2003.
[89] P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng, S. M. Sze, “Effects of NH3-plasma nitridation on the electrical characterizations of low-k hydrogen silsesquioxane with copper interconnects”, IEEE Transactions on Electron Devices, Vol. 47, No.9, pp. 1733-1739. September 2000.
[90] N.Biswas, J. A. Lubguban, S. Gangopadhyay, “Electric field and temperature-induced
removal of moisture in nanoporous organosilicate films”, Appl. Phys. Lett.: Vol. 84,
pp.4254-4256 , 2004.
[91] W. Chen, Q. Han, R. Most, C. Waldfried, O. Escorcia, I. Berry, “Plasma Impacts to an
O-SiC Low-k Barrier Film”,J. Electrochem. Soc. Vol. 151, No. 8 F182-F188,2004.
[92] D. Shamiryan, M. R. Baklanov, S. Vanhaelemeersch, K. Maex, “Comparative study of
SiOCH low-k films with varied porosity interacting with etching and cleaning plasma”, J. Vac. Sci. Technol. B Vol. 20 No. 5 , pp. 1923-1928, 2002.
[93] P. Cova, S. Poulin, O. Grenier, R. A. Masut, “A method for the analysis of multiphase bonding structures in amorphous SiOxNy films” J. Appl. Phys: Vol. 97 pp. 073518-073527 , 2005.
[94] Handbook of X-ray Photoelectron Spectroscopy. p57.
[95] K. M. Chang, M. H. Tseng, I. C. Deng, Y. P. Tsai, S. J. Yen, Using NH3 Plasma Pretreatment to Improve the Characteristics of Organic Spin-on Low-k materials for Copper Metallization “, Jpn. J. Appl. Phys. Vol. 40, pp.6663-6667, 2001.
[96] Y. L. Cheng, Y. L. Wang, C. P. Liu, Y.L. Wu, K. Y. Lo, C. W. Liu, J. K. Lan, C. Ay, M. S. Feng:“Intergration of a stack of two Flourine doped Silocon oxide film with ULSI interconnect metallzation.“ Mater. Chem. Phys., Vol. 83 ,150-157,2004.
[97] M. Darnon, T. Chevolleau, O. Joubert, S. Maitrejeau, J. C. Barble, J. Torres: “Undulation of sub-100 nm porous dielectric structures: A mechanical analysis“,Appl. Phys. Lett. Vol. 91 , pp.194103-194105 , 2007.
[98] V. Dharmadhikari, J. S. Sims, B. Varadarajan, S. Chang, D. Niu, K. Shrinivasan,“UV-assisted processing for advanced dielectric films”, Solid State Technol. Vol. 48 , No. 3, pp 43-47, 2005.
[99] T. Yoda, Y. Nakasaki, H. Hashimoto, K. Fujita, H. Miyajima, M. Shimada, R. Nakata, N. Kaji, N. Hayasaka: Structural Studies of High-Performance Low-k Dielectric Materials Improved by Electron-Beam Curing , Jpn. J. Appl. Phys. Vol. 44 pp.75-81,2005.
[100] M. A. Brook, Silicon in organic, Organometalic and Polymer Chemistry (Wiley, New York, 2000.)
[101]. M. Born, E. Wolf, Principles of Optics, Pergamon Press, New York, p87,1983.
[102] Y. Shioya, Y. Kotake. T. Ishimaru. T. Masubuchi. Hi Ikakufa. S. Ohgawara and K. Maeda,”The Effects of Dilution Gas and Pressure on the Properties of PE-CVD Low-k Film”, J. Electrochem. Soc. Vol. 150, pp. F1-F6, 2003.
[103] Y. H. Wang and R. Kumar,“Stability of Carbon-Doped Silicon Oxide Low-k Thin Films”, J. Electrochem. Soc. Vol.151, pp. F73-76, 2004.
[104] R. Gonella, P. Motte, J. Torres , “Assessment of copper contamination impact on inter-level dielectric reliability performed with time-dependent-dielectric-breakdown tests”, Microelectron. Reliabil. Vol. 40, pp1305-1309, 2000.
[105] Gleen B. Alers, K. Jow, R. Shaviv, G.errit Kooi, G. W. Ray, “Interlevel dielectric failures in copper/low-k structures”, IEEE Trans. Device Mater. Rel., Vol. 4, No. 2, pp148-152, Jun. 2004.
[106] J. Noguchi, N. Konishi, Y. Yamada, “Influence of post-CMP cleaning on Cu interconnects and TDDB reliability”, IEEE Trans. Electron Devices, Vol. 52, No. 5, pp934-941, May 2005.
[107] C. H. Huang, H. L. Huang, C. I. Hung, N. F. Wang, Y. H. Wang, and M. P. Houng, "Bond Structure in Porous SiOCH Low-k Film Fabricated by Ultraviolet Irradiation" Jpn. J. Appl. Phys, vol. 47 (3), pp. 1532-1535 , 2008.
[108] Chery D. Hartfield, Ennis T. Ogawa, Y. J. Park, T. C. Chiu, H. Guo, “Interface reliability assessments for copper/low-k products”, IEEE Trans Device Mater. Rel., vol. 4, no. 2, pp129-141, Jun. 2004
[109] C. Hong, L. Milor, ”Modeling of the breakdown mechanisms for porous copper/low-k process flows”, Microelectronic Reliabil., Vol.47, pp. 1478-1482 ,2007.