| 研究生: |
李佩庭 Lee, Pei-Ting |
|---|---|
| 論文名稱: |
利用釤-鈷溶劑進行氣-液-固機制生長碳化矽薄膜之研究 Growth of SiC Films Synthesized by Vapor-Liquid-Solid Mechanism using Sm-Co Solvent |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 碳化矽 、釤鈷溶劑 、氣-液-固機制 |
| 外文關鍵詞: | 3C-SiC, Sm-Co solvent, vapor-liquid-solid mechanism |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以甲烷當碳源、矽基板當矽源,並利用Sm-Co混和粉末作為液相溶劑,進行氣-液-固機制,製備碳化矽薄膜。實驗結果顯示,利用特殊的循環控溫製程,在Sm:Co=64:36 at.%共晶點的成分時,可以在低於1100℃且不需碳化矽晶種環境下生長出β-SiC的多晶結構之薄膜。實驗結果發現,生成的碳化矽薄膜為3C結構,薄膜厚度約為500 nm,且矽基板與碳化矽薄膜兩者的晶格成長方向同為(111)面,兩者之間存在厚度約為3~5 nm的非晶緩衝層;且若缺少此溶劑則無法生成碳化矽薄膜。
本研究首先對於使用之Sm-Co溶劑進行相關分析,接著,探討在生長碳化矽薄膜過程中,此溶劑的作用,以及氫氣在實驗中所扮演的角色;並且利用不同的持溫時間與升溫曲線,探討所設計的循環曲線之每一步驟的重要性與功能,加以求證設計之假設;最後根據實驗結果及文獻參考推測本實驗之碳化矽薄膜的成長機制。
實驗結果發現,氫氣在生長碳化矽的過程中,扮演極為重要的角色,當氫氣流量過多或過少時,皆無法生長出結晶性佳的碳化矽薄膜。再者,所使用的溶劑Co會先與矽基板反應,因而在矽基板上留下孔隙,這些缺陷有助於碳的析出及為碳化矽優先成長的地方,因此,此溶劑可以促進碳化矽在矽基板上的生長,且此溶劑可以在較低的溫度形成液相,又有助於碳和矽的相互擴散,因此,此溶劑加快碳化矽的成長速率,且又降低碳化矽的生長溫度。此外,碳與矽在所設計的循環升降溫曲線中,進行擴散、鍵結、與修復:首先,在持溫過程中,碳與矽向溶劑互相擴散,並因為降溫而析出大量的碳,與矽鍵結形成碳化矽,又在高溫時,溶劑輔助碳化矽進行退火處理與缺陷修復,因而逐步形成結晶性較佳的碳化矽薄膜。
In this present study, silicon carbide layers were grown on a Si substrate by vapor-liquid-solid mechanism using Sm-Co solvent at a temperature below 1100oC without SiC seeding. The synthesis was carried out in a tube furnace through cyclic heating process using methane as a carbon source, silicon wafer as a silicon source, and Sm-Co mixed powder with eutectic composition (Sm: Co=64:36 at%) as a solvent. Results indicate that β-SiC film of about 500 nm has been successfully fabricated on Si (111) substrate, and there is an amorphous SiC layer of 3~5 nm as buffer layer between SiC film and Si substrate. HR-images and EBSD results indicate that both SiC film and Si substrate have the same cubic structure and grow in the same <111> orientation.
The effect of Sm-Co solvent, influence of different H2 flow rate and effect of different step during cyclic heating process, for growth of SiC film have been discussed in this study. Moreover, the growth mechanism of SiC film was hypothesized owing to experimental results and literature survey. The growth of SiC from rare earth Sm-based solvent is an innovative approach, and Co can promote the formation of SiC due to the formation of pits on the substrate during the process.
Results indicate that H2 play an important role for reduction as well as for etching. In other worlds, when the flow rate of H2 is too low or too high, the formation of SiC could not take place. The possible growth mechanism of SiC film was proposed as follows: Initially, Sm-Co solvent would melt and leave many pits on the substrate as the temperature increases up to 1000oC during step 1. Then, the carbon atoms decomposed from methane along with silicon atoms diffused to solvent during step 2. And further, carbon atoms precipitate due to lower solubility at low temperature during cooling in step 3, and react with Si to form amorphous SiC during step 4, subsequently. This amorphous SiC layer is important, because it could relax the stress between Si substrate and SiC film. Finally, the grown amorphous SiC was restored into more perfect crystallinity and expand at higher temperature during step 5~6.
[1].Willian D. Callister , Jr. , Materials Science and Engineering An Introduction, Wiley (1999).
[2].李文鴻,“電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的
研究”,國立台灣科技大學化學工程技術研究所博士論文,(1994).
[3].Y.-M. Li , B.F.Fieselmann , A.Catalano , Amorphous and crystalline silicon carbide IV, Springer-Verlag 229 (1992).
[4].黃振倉,“碳化矽奈米針製備及其形成機制之研究”,國立清華
大學材料科學工程研究所博士論文,(1997).
[5].R. R. Siergiej et al., Materials Science and Engineering B, 61-62, p.9 (1999).
[6].J.A. Cooper , Jr. , Materials Science and Engineering B, 44, p.387 (1997).
[7].宋健民,鑽石底碳化矽:LED的夢幻基材,工業材料雜誌,246, p.166 (2007).
[8].X. J. Ning, P. Pirouz, Jr., J. Mater. Rev., 11, 884 (1996).
[9].H. Jagodzinski and H. Arnold, Silicon Carbide, A High Temperature Semiconductor, ed. J. R. O’Connor and J. Smiltens, Pregamon, New York, 136 (1960).
[10]. Tairov, Y.M. and Y.A. Vodakov, Electroluminescence, edited by JI Pankove, (1977).
[11]. 汪建民,材料分析,中國材料科學學會,(2005).
[12]. Carl-Mikael Zetterling , Process technology for silicon carbide devices, (2002).
[13]. R. Stevens, J. Mater. Sci., 7, p.517 (1972).
[14]. P. T. B. Shaffer, Acta Cryst., B25, p.477 (1969).
[15]. 林博文,碳化矽及其他碳化物,陶瓷技術手冊,p.745 (1994).
[16]. T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Crystal Growth, 115, p.634 (1991).
[17]. D. S. Hoover, S. Y. Lynn, and D. Grag, Solid State Technol., 89 (1991).
[18]. G. Rehder, M.N.P. Carreno, Journal of Non-Crystalline Solids, 352, p.1822 (2006).
[19]. L. G. Matus, L. Tong, M. Mehregany, D. J. Larkin, P. G. Neudeck, Inst. Phys. Conf., Institute of Physics Publishing, DC, USA, 137, p.185 (1993).
[20]. S. Kavecky, B. Janekova, J. Madejova, P. Sajgalik, J. Eur. Ceram. Soc., 20, p.1939 (2000).
[21]. E. D. Afaghani, K. Yamaguchi, I. Horaguchi, T. Nakamoto, Wear, 195, p.223 (1996).
[22]. M.K. Han, J.S. Park, Y. Mastumoto, H. Okamoto, Y. Hamakawa,Proceedings of the International Conference on Amorphous and Crystalline Silicon Carbide III - and Other Group IV - IV Material, p.75 (1992).
[23]. D. S. Kim, Y. H. Lee, J. Electrochem. Soc., 142, p. 3493 (1995).
[24]. W. F. Knippenberg, Philips Res. Rep. (Netherlands),18, p.161(1963).
[25]. Yu. M. Tairov, V. F. Tsvetkov, J. Cryst. Growth (Netherlands), 52, p.146 (1981).
[26]. R. Yakimov et al, Mater. Sci. Eng. (Netherlands) B,61-62, p.54 (1999).
[27]. P. D. Ramesh, B. Vaidhyanathan, M. Ganguli, R.J. Rao, J. Mater. Res., 9, p.3025 (1994).
[28]. V. F. Tsvetkov, S. T. Allen, H. S. Kong, C. H. Carter, Jr., Inst. Phys. Conf. Ser., 142, p.17 (1997).
[29]. Dieter H. Hofmann, Matthias H. Muller, Materials Science and Engineering B, 61–62, p.29 (1999).
[30]. Y. M. Tairov, Y. A. Vodakov, Topics in Applied Physics 17: Electroluminescence, Springer, Berlin, 31 (1977).
[31]. Y. M. Tairov, N. S. Peev, N. A. Smirnova, A. A. Kalnin, Cryst. Res. Technol. 21, p.1503 (1986).
[32]. F. A. Halden, Proc. Conf. on Silicon Carbide, Boston 1959, Pergamon Press, 115 (1960).
[33]. R. I. Scace, G. A. Slack, J. Chem. Phys., 30, p.1551 (1959).
[34]. R. N. Hall, J. Appl. Phys., 29, p.914 (1958).
[35]. H. Kleykamp, G. Schumacher, Ber. Bunsenges. Phys. Chem., 9, p.799 (1993).
[36]. Andrey S. Bakin, International Journal of High Speed Electronics and Systems, 15, 4, p.747 (2005).
[37]. Yoon Soo Park, SiC Materials and devices, 52(1998).
[38]. M. Syvajarvi, R. Yakimova, M. Tuominen, A.
Kakanakova-Georgieva, M. F. MacMillan, A. Henry, Q. Wahab, E. Janzen, J. Crystal Growth, 197, p.147 (1999).
[39]. 平井敏雄、淺倉寬行、佐佐木真,日本金屬學會會報,26,p.809 (1987).
[40]. S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, Handbook of Plasma Processing Technology, Nays, New Jersey, p.261 (1990).
[41]. M. Komatz, K. Matsuishi, S. K. Hong, T. Yao, phys. stat. sol., 3, p.571 (2006).
[42]. A. A. Burk Jr.,1, M.J. OÕLoughlin, H. D. Nordby Jr., Journal of Crystal Growth, 200 (1999).
[43]. T. S. Sudarshan, S. I. Maximenko, MicroElectronic Engineering, 83, p.155 (2006).
[44]. D. H. Hofmann, and M. H. Müller, Materials Science and Engineering B, 61-62, p.29 (1999).
[45]. O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker, J. Crystal Growth, 271, p.142 (2004).
[46]. L. B. Griffiths, A. I. Mlavsky, J. Electrochem. Soc., 7, p.805 (1964).
[47]. R. Yakimova, M. Tuominen, A. S. Bakin, J. O. Fornall, A. Vehanen, E. Janzen, Inst. Phys. Conf.Ser., 142, p.101 (1996).
[48]. P. A. Janeuay, Ceram. Ind., 4, p.42 (1992).
[49]. Milton Ohring, Material Science of Thin Films, p.357 (2002).
[50]. T. V. Baker, J. Chem. Soc. Trans.,89, p.1120 (1906).
[51]. T. V. Baker, Mineral. Mag., 14, p.235 (1907).
[52]. T. V. Baker, Z. Kristallogr., 45, p.1 (1908).
[53]. L. Royer, Ann. Phys., 23, p.16 (1935).
[54]. J. H. van der Merwe, J. Appl. Phys., 34, p.117 (1963).
[55]. W. Ballmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin,( 1970).
[56]. P. H. Pumphery, Grain Boundary Structure and Properties, ed. G. A. Chanwick and D. A. Smithe, Academic Press, New York, p.139 (1976).
[57]. R. W. Balluffi, A Brokman and A. H. King, Acta Metal., 30, p.1453 (1982).
[58]. A. Brokman and R. W. Balluffi, Acta Metal., 29, p.1703 (1981).
[59]. R. S. Wagner, W. C. Ellis, Trans. Metall. Soc., AIME, 233, p.1053 (1965).
[60]. S. Motojima, M. Hasegawa, T. Hattori, J. Cryst. Growth, 87, p.311 (1988).
[61]. I. C. Leu, Y. M. Lu, M. H. Hon, Mater. Chem. Phys., 56, p. 256 (1998).
[62]. H. Zhou, H. Chen, Y. Liu, Y. Wu, J. Mater. Sci., 35, p.471 (2000).
[63]. N. Ozaki, Y. Takeda, M. Hirata, Mater. Res. Soc. Symp. Proc., 536, p.305 (1999).
[64]. G. Ferro, C. Jacquier, New J.Chem., 28, p.889 (2004).
[65]. G. Ferro, M. Soueidan, O. Kim-Hak, F. Cauwet, Y. Monteil, Materials Science Forum, 556-557, p.41 (2007).
[66]. L.L. Oden, R.A. McCune, Metall. Trans.,18A, p.2005 (1987).
[67]. T.B. Massalski, Binary alloy phase diagrams, American Society for
Metals, Metals Park, (1986).
[68]. A. Croll, N. Salk, F. R. Szofran, S.D. Cobb, M.P., Volz, J. Cryst.
Growth, 242, p.45 (2002).
[69]. K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mat. Sci. Engin., 1254, p.99 (1998).
[70]. G. Ferro, M. Soueidan, C. Jacquier, P. Godignon, Th. Stauden, J. Pezoldt, M. Lazar, J. Montserrat, Y. Monteil, Materials Science Forum, 527-529, p.275 (2006).
[71].Christophe Jacquiera, Gabriel Ferroa, Franois Cauweta, Jean Claude Vialaa,Ghassan Younesb, Yves Monteila, Journal of Crystal Growth,254, p.123 (2003).
[72].Masashi KUMAGAWA, Masashi OZEKI and Soji YAMADA, 9,
p.1422 (1970).
[73]. Michael G. Mauk, Bryan W. Feyock, Archana Sharma,Robert G. Hunsperger, Journal of Crystal Growth, 225, p.322 (2001).
[74]. Thaddeus B. Massalski, Hiroaki Okamoto, P.R. Subramanian, Linda Kacprzak, Binary alloy phase diagrams, Vol. 2, Ohio :ASM International, Materials Park, 2nd ed., p.1241 (1990).
[75]. Chie Sheng Liu, Lu Sheng Hong, Ming Shien Hu, Journal of Physics and Chemistry of Solids, 69, p.576 (2008).
[76]. Ming Shien Hu, Lu Sheng Hong, Journal of Crystal Growth, 265, p.382 (2004).
[77]. H. Nagasawa, K. Yagi, Phys. Status Solid B, 202, p.335 (1997).
[78]. 陳又菱,“以液相磊晶法製備單晶碳化矽的製程開發及成長機
制的研究“,國立成功大學材料科學及工程學系碩士論文,
(2009).
[79]. Hisao Nakashima, Takuo Sugano, Hisayoshi Yanai, Japanese Journal of Applied Physics, 5, 10, p.874 (1966).
[80]. A. Tanaka, T. Ataka, E. Ohkura, H. Katsuno, Journal of Crystal Growth, 269, p.413 (2004).
[81]. A. Tanaka, N. Shiozaki, H. Katsuno, Journal of Crystal Growth, 237, p.1202 (2002).
[82]. V. V. Berezutskii, M. I. Ivanov, Powder Metallurgy and Metal Ceramics, 48, p.454 ( 2009).
[83]. O. V. Andreev, A. S. Vysokikh, and V. G. Vaulin, Russian Journal of Inorganic Chemistry, 53, 8, p.1320 (2008).
[84]. T. Ivas, A.N. Grundy, E. Povoden, S. Zeljkovic, L.J. Gauckler, Acta Materialia, 58, p.4077 (2010).
[85]. Maher Soueidan, Gabriel Ferro, Olivier Kim-Hak, Florence Robaut, Olivier Dezellus, Jacques Dazord, Franc﹐ois Cauwet, Jean-Claude Viala, Bilal Nsouli, Acta Materialia, 55, p.6873 (2007).
[86]. M. Soueidan, G. Ferro, B. Nsouli, F. Cauwet, L. Mollet, C. Jacquier, G. Younes, Y. Monteil, Journal of Crystal Growth, 293, p.433 (2006).
[87]. Huatao Wang, Zhou Zhang, Lai Mun Wong, Shijie Wang, Zhipeng Wei, Gong Ping Li, Guozhong Xing, Donglai Guo, Dandan Wang, Tom Wu, ACS NANO, 4, p.2901 (2010).
[88].Chen, L. J. Silicide Technology for Intergrated Circuits, ( 2004).