簡易檢索 / 詳目顯示

研究生: 蔡晶薇
Tsai, Ching-Wei
論文名稱: 鈀膜分離氫氣之研究:多層膜管系統與水氣轉移反應
Investigation of hydrogen permeation across a palladium membrane: multichannel membrane system and water gas shift reaction
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 鈀膜濃度極化多層膜管旁通比流道設計氫氣回收率水氣轉移薄膜反應器數值模擬
外文關鍵詞: Membrane, multichannel membrane system, bypass ratio, flow-field design, hydrogen recovery, numerical simulation, water gas shift reaction, membrane reactor
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以模擬方式,分析旁通比對於氫氣滲透之影響及薄膜反應器內水氣轉移反應之效應。藉由數值結果,了解多層膜管及薄膜反應器之操作條件對氫氣滲透的影響,並提供膜管操作參數之建議,作為實驗之參考依據,本文主要分為兩大部分,如下所述。
    第一部分首先進行多層膜管設計,使尾氣殘餘之氫氣能進行第二次薄膜滲透及回收,並探討進氣雷諾數、掃氣雷諾數及旁通比對氫氣回收之影響。模擬結果顯示,所設計之薄膜分離系統中,適合用於第一層及第四層膜管之掃氣雷諾數分別為100及25;提高旁通比不會影響第一層薄膜之氫氣回收率,但可以增加第二層薄膜之氫氣回收率;不論旁通比為何,當混合氣雷諾數為500時,第二層薄膜皆可達到最大之氫氣回收率;當進氣雷諾數為2000且旁通比為0.8時,與無旁通之情況相比,可改善氫氣回收率高達219%。從研究結果建立進氣雷諾數及旁通比之變化與其所能得到之氫氣回收率關係圖,可作為彈性操作之參考。
    第二部分建立結合水氣轉移產氫過程及氫氣純化機制之薄膜反應器模型,探討溫度與S/C比對一氧化碳轉化率及氫氣回收率之影響。模擬結果顯示,在本薄膜反應器內,500 °C以下時,反應由動力主導,500 °C以上時,反應則由熱力主導;有薄膜作用下之轉化率較無薄膜作用時高;不論是否有薄膜之作用,500 °C時轉化率最高;溫度為700 °C,S/C為1時,薄膜對轉化率之改善比可達1.83;溫度大於500 °C時,不論S/C為何,皆可突破反應熱力平衡。

    The performance of multichannel membrane system and membrane reactor system with water gas shift reaction was investigated by simulation. There are two parts of this study. In the first part, the predictions suggest that the H2 recovery (HR) can be improved by flow bypass significantly up to 219 %. The higher the Reynolds number of the feed gas, the more pronounced the improvement of the bypass. The HR by the first membrane is independent of the bypass ratio (BR), revealing that the enhancement of HR is completely contributed by the second membrane. Regardless of the bypass ratio, the maximum HR by the second membrane always develops at the feed gas Reynolds number (Rer,M1) of 500. This suggests that the aforementioned Reynolds number is an appropriate condition for H2 separation in the present membrane system. Based on the HR where flow bypass is zero, the higher the Rer,M1, the larger the intensification of H2 permeation. A contour map and a correlation from regression analysis in terms of Rer,M1 and BR were established. Under a desired H2 recovery, the combination of Rer,M1 and BR may provide a practical insight into the flexible operation for H2 separation. In the second part of this research, the results indicate that there is an exchange between kinetics and thermodynamics at 500 °C and that the CO conversion can achieve the maximum. When temperature is less than 500 °C, the water gas shift (WGS) reaction is controlled by kinetics. When the temperature is higher than 500°C, the WGS reaction is controlled by thermodynamics. The maximum CO conversion develops at 700°C and S/C ratio = 1. The CO conversion can overcome the thermodynamic equilibrium limitations when the temperature is higher than 500°C, regardless of the S/C value.

    摘要 II Abstract IV 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明(nomenclature) XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 8 1.3 研究流程圖 9 第二章 文獻回顧 11 2.1 薄膜材料 11 2.2 氣體滲透行為 12 2.3 薄膜滲透相關理論 15 2.4 濃度極化現象(Concentration polarization) 17 2.5 流道設計之研究 19 2.6 水氣轉移之研究 22 第三章 研究方法 26 3.1 物理問題及模型說明 26 3.2 統御方程式(Governing Equation) 27 3.2.1 非觸媒區之統御方程式(Governing Equation of non-porous region) 27 3.2.2 觸媒區之統御方程式(Governing Equation of porous region) 28 3.3 混合氣性質 30 3.3.1 混合氣體之動力黏度 30 3.3.2 混合氣之擴散係數 30 3.3.3 混合氣之熱傳導係數 32 3.3.4 混合氣之比熱 32 3.4 薄膜選透氫氣機制 35 3.5 水氣轉移反應 36 3.6 數值方法(Numerical Method) 37 3.6.1 離散(Discretization) 38 3.6.2 SPOOLES求解法 39 3.6.3 阻尼常數(Damping constant) 39 3.6.4 收斂標準 40 第四章 結果討論 41 4.1 多層膜管之彈性操作 41 4.1.1 薄膜系統 42 4.1.2 格點獨立性測試 44 4.1.3 邊界條件設定 48 4.1.4 數值模型驗證 49 4.1.5 操作參數使用範圍 51 4.1.6 掃氣端雷諾數之影響 52 4.1.7 尾氣端雷諾數之影響 57 4.1.8 旁通比之影響 59 4.1.9 混合氣比例之影響 61 4.1.10 混合氣雷諾數與旁通比之影響 63 4.2 薄膜反應器內水氣轉移反應 69 4.2.1 薄膜系統 69 4.2.2 格點獨立性測試 71 4.2.3 邊界條件設定 74 4.2.4 數值模型驗證 75 4.2.5 操作參數使用範圍 76 4.2.6 無薄膜作用下之水氣轉移反應 78 4.2.7 薄膜對水氣轉移反應之影響 81 4.2.8 S/C比之影響 86 4.2.9 薄膜表面與觸媒床之現象 89 4.2.10 提高轉化率之效應 95 第五章 結論與建議 97 5.1 結論 97 5.1.1 多層膜管之彈性操作 97 5.1.2 薄膜反應器內水氣轉移反應 98 5.2 建議 98 參考文獻 100 自述 110

    Adams Ii T.A., Barton P.I. (2009). A dynamic two-dimensional heterogeneous model for water gas shift reactors. International Journal of Hydrogen Energy, 34, pp. 8877-8891.
    Adhikari S., Fernando S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45, pp. 875-881.
    Adrover M.E., López E., Borio D.O., Pedernera M.N. (2009). Simulation of a membrane reactor for the WGS reaction: Pressure and thermal effects. Chemical Engineering Journal, 154, pp. 196-202.
    Alkhamis N., Oztekin D.E., Anqi A.E., Alsaiari A., Oztekin A. (2015). Numerical study of gas separation using a membrane. International Journal of Heat and Mass Transfer, 80, pp. 835-843.
    Amphlett J.C., Mann R.F., Peppley B.A. (1996). On board hydrogen purification for steam reformation/ PEM fuel cell vehicle power plants. International Journal of Hydrogen Energy, 21, pp. 673-678.
    Ang M.L., Oemar U., Kathiraser Y., Saw E.T., Lew C.H.K., Du Y., Borgna A., Kawi S. (2015). High-temperature water–gas shift reaction over Ni/xK/CeO2 catalysts: Suppression of methanation via formation of bridging carbonyls. Journal of Catalysis, 329, pp. 130-143.
    Atsonios K., Panopoulos K.D., Doukelis A., Koumanakos A.K., Kakaras E., Peters T.A., van Delft Y.C. (2015). 1 - Introduction to palladium membrane technology Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications pp. 1-21: Woodhead Publishing.
    Augustine A.S., Ma Y.H., Kazantzis N.K. (2011). High pressure palladium membrane reactor for the high temperature water–gas shift reaction. International Journal of Hydrogen Energy, 36, pp. 5350-5360.
    Burcat A., Dixon-Lewis G., Frenklach M., Hanson R., Salimian S., Troe J., Warnatz J., Zellner R., Gardiner W.J. (2012). Combustion chemistry: Springer Science & Business Media.
    Caravella A., Barbieri G., Drioli E. (2008). Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chemical Engineering Science, 63, pp. 2149-2160.
    Caravella A., Melone L., Sun Y., Brunetti A., Drioli E., Barbieri G. (2016). Concentration polarization distribution along Pd-based membrane reactors: A modelling approach applied to Water-Gas Shift. International Journal of Hydrogen Energy, 41, pp. 2660-2670.
    Catalano J., Giacinti Baschetti M., Sarti G.C. (2009). Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science, 339, pp. 57-67.
    Chein R.Y., Chen Y.C., Chang C.S., Chung J.N. (2010). Numerical modeling of hydrogen production from ammonia decomposition for fuel cell applications. International Journal of Hydrogen Energy, 35, pp. 589-597.
    Chein R.Y., Chen Y.C., Chung J.N. (2013). Parametric study of membrane reactors for hydrogen production via high-temperature water gas shift reaction. International Journal of Hydrogen Energy, 38, pp. 2292-2305.
    Chein R.Y., Chen Y.C., Chung J.N. (2015). Sweep gas flow effect on membrane reactor performance for hydrogen production from high-temperature water-gas shift reaction. Journal of Membrane Science, 475, pp. 193-203.
    Chein R.Y., Chen Y.C., Yu C.T., Chung J.N. (2015). Modeling and simulation of H2S effect in high-temperature water–gas shift reaction using coal-derived syngas. International Journal of Hydrogen Energy, 40, pp. 8051-8061.
    Chen C.H., Ma Y.H. (2010). The effect of H2S on the performance of Pd and Pd/Au composite membrane. Journal of Membrane Science, 362, pp. 535-544.
    Chen W.H., Hsia M.H., Chi Y.H., Lin Y.L., Yang C.C. (2014). Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes. Applied Energy, 113, pp. 41-50.
    Chen W.H., Hsieh T.C., Jiang T.L. (2008). An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction. Energy Conversion and Management, 49, pp. 2801-2808.
    Chen W.H., Hsu C.L., Du S.W. (2015). Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace. Energy, 86, pp. 758-771.
    Chen W.H., Lin B.J. (2013). Hydrogen production and thermal behavior of methanol autothermal reforming and steam reforming triggered by microwave heating. International Journal of Hydrogen Energy, 38, pp. 9973-9983.
    Chen W.H., Lin C.H., Lin Y.L. (2014). Flow-field design for improving hydrogen recovery in a palladium membrane tube. Journal of Membrane Science, 472, pp. 45-54.
    Chen W.H., Lin C.H., Lin Y.L., Tsai C.W., Chein R.Y., Yu C.T. Interfacial permeation phenomena of hydrogen purification and carbon dioxide separation in a non-isothermal palladium membrane tube. Chemical Engineering Journal.
    Chen W.H., Lin M.R., Jiang T.L., Chen M.H. (2008). Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 33, pp. 6644-6656.
    Chen W.H., Lin M.R., Lu J.J., Chao Y., Leu T.S. (2010). Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction. International Journal of Hydrogen Energy, 35, pp. 11787-11797.
    Chen W.H., Lin S.C. (2015). Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation. Energy, 82, pp. 206-217.
    Chen W.H., Liou H.J., Hung C.I. (2013). A numerical approach of interaction of methane thermocatalytic decomposition and microwave irradiation. International Journal of Hydrogen Energy, 38, pp. 13260-13271.
    Chen W.H., Syu W.Z., Hung C.I., Lin Y.L., Yang C.C. (2012). A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. International Journal of Hydrogen Energy, 37, pp. 12666-12679.
    Chen W.H., Syu W.Z., Hung C.I., Lin Y.L., Yang C.C. (2013). Influences of geometry and flow pattern on hydrogen separation in a Pd-based membrane tube. International Journal of Hydrogen Energy, 38, pp. 1145-1156.
    Chen W.H., Syu Y.J. (2010). Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed. International Journal of Hydrogen Energy, 35, pp. 10179-10189.
    Cheng X., Shi Z., Glass N., Zhang L., Zhang J., Song D., Liu Z.-S., Wang H., Shen J. (2007). A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 165, pp. 739-756.
    COMSOL4.0a. (2010). COMSOL Multiphysics Reference Guide.
    De Falco M., Di Paola L., Marrelli L. (2007). Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming. International Journal of Hydrogen Energy, 32, pp. 2902-2913.
    Dong X., Wang H., Rui Z., Lin Y.S. (2015). Tubular dual-layer MFI zeolite membrane reactor for hydrogen production via the WGS reaction: Experimental and modeling studies. Chemical Engineering Journal, 268, pp. 219-229.
    Gao H., Lin Y.S., Li Y., Zhang B. (2004). Chemical Stability and Its Improvement of Palladium-Based Metallic Membranes. Industrial & Engineering Chemistry Research, 43, pp. 6920-6930.
    García-García F.R., León M., Ordóñez S., Li K. (2014). Studies on water–gas-shift enhanced by adsorption and membrane permeation. Catalysis Today, 236, Part A, pp. 57-63.
    Gosiewski K., Warmuzinski K., Tanczyk M. (2010). Mathematical simulation of WGS membrane reactor for gas from coal gasification. Catalysis Today, 156, pp. 229-236.
    Hla S.S., Morpeth L.D., Dolan M.D. (2015). Modelling and experimental studies of a water–gas shift catalytic membrane reactor. Chemical Engineering Journal, 276, pp. 289-302.
    Hwang K.R., Lee S.W., Ryi S.K., Kim D.K., Kim T.H., Park J.S. (2013). Water-gas shift reaction in a plate-type Pd-membrane reactor over a nickel metal catalyst. Fuel Processing Technology, 106, pp. 133-140.
    Iwuchukwu I.J., Sheth A. (2008). Mathematical modeling of high temperature and high-pressure dense membrane separation of hydrogen from gasification. Chemical Engineering and Processing: Process Intensification, 47, pp. 1292-1304.
    Jafarkhani M., Moraveji M.K., Davarnejad R., Moztarzadeh F., Mozafari M. (2012). Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination, 294, pp. 8-16.
    Jani J.M., Wessling M., Lammertink R.G.H. (2011). Geometrical influence on mixing in helical porous membrane microcontactors. Journal of Membrane Science, 378, pp. 351-358.
    Kluiters S.C.A. (2004). Energy Center of the Netherlands, Petten.
    Koros W.J., Fleming G.K. (1993). Membrane-based gas separation. Journal of Membrane Science, 83, pp. 1-80.
    Laboratory N.E.T. (2002). Wabash River Coal Gasification Repowering Project: A DOE Assessment. Retrieved from
    Li J., Yoon H., Oh T.K., Wachsman E.D. (2009). High temperature SrCe0.9Eu0.1O3−δ proton conducting membrane reactor for H2 production using the water–gas shift reaction. Applied Catalysis B: Environmental, 92, pp. 234-239.
    Lu G.Q., Diniz da Costa J.C., Duke M., Giessler S., Socolow R., Williams R.H., Kreutz T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314, pp. 589-603.
    Lu H., Zhu L., Wang W., Yang W., Tong J. (2015). Pd and Pd–Ni alloy composite membranes fabricated by electroless plating method on capillary α-Al2O3 substrates. International Journal of Hydrogen Energy, 40, pp. 3548-3556.
    Ma S., Song L. (2006). Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel. Journal of Membrane Science, 284, pp. 102-109.
    Mallada R., Menéndez M. (2008). Inorganic membranes: synthesis, characterization and applications (Vol. 13): Elsevier.
    Marín P., Díez F.V., Ordóñez S. (2012). Fixed bed membrane reactors for WGSR-based hydrogen production: Optimisation of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 37, pp. 4997-5010.
    Meshkani F., Rezaei M. (2015). Hydrogen production by high temperature water gas shift reaction over highly active and stable chromium free Fe–Al–Ni catalysts. International Journal of Hydrogen Energy, 40, pp. 10867-10875.
    Moliner R., Suelves I., Lázaro M.J., Moreno O. (2005). Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry. International Journal of Hydrogen Energy, 30, pp. 293-300.
    Mourgues A., Sanchez J. (2005). Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science, 252, pp. 133-144.
    Ockwig N.W., Nenoff T.M. (2007). Membranes for Hydrogen Separation. Chemical Reviews, 107, pp. 4078-4110.
    Pan X.L., Xiong G.X., Sheng S.S., Stroh N., Brunner H. (2001). Thin dense Pd membranes supported on [small alpha]-Al2O3 hollow fibers. Chemical Communicationspp. 2536-2537.
    Pizzi D., Worth R., Giacinti Baschetti M., Sarti G.C., Noda K.-i. (2008). Hydrogen permeability of 2.5 μm palladium–silver membranes deposited on ceramic supports. Journal of Membrane Science, 325, pp. 446-453.
    Ryi S.-K., Park J.-S., Kim S.-H., Cho S.-H., Kim D.-W., Um K.-Y. (2006). Characterization of Pd–Cu–Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen separation. Separation and Purification Technology, 50, pp. 82-91.
    Sanz R., Calles J.A., Alique D., Furones L. (2014). H2 production via water gas shift in a composite Pd membrane reactor prepared by the pore-plating method. International Journal of Hydrogen Energy, 39, pp. 4739-4748.
    Sanz R., Calles J.A., Alique D., Furones L., Ordóñez S., Marín P. (2015). Hydrogen production in a Pore-Plated Pd-membrane reactor: Experimental analysis and model validation for the Water Gas Shift reaction. International Journal of Hydrogen Energy, 40, pp. 3472-3484.
    Seo Y.S., Seo D.J., Seo Y.T., Yoon W.L. (2006). Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor. Journal of Power Sources, 161, pp. 1208-1216.
    Shi Z., Wu S., Szpunar J.A., Roshd M. (2006). An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, 280, pp. 705-711.
    Smart S., Lin C.X.C., Ding L., Thambimuthu K., Diniz da Costa J.C. (2010). Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 3, pp. 268-278.
    Smith R.J.B., Loganathan M., Shantha Murthy S. (2010). A Review of the Water Gas Shift Reaction Kinetics International Journal of Chemical Reactor Engineering (Vol. 8).
    Spillman R.W. (1989). Economics of gas separation membranes. Chemical engineering progress, 85, pp. 41-62.
    Tong J., Su L., Haraya K., Suda H. (2008). Thin Pd membrane on α-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template. Journal of Membrane Science, 310, pp. 93-101.
    Tosti S., Basile A., Bettinali L., Borgognoni F., Chiaravalloti F., Gallucci F. (2006). Long-term tests of Pd–Ag thin wall permeator tube. Journal of Membrane Science, 284, pp. 393-397.
    Tosti S., Basile A., Borelli R., Borgognoni F., Castelli S., Fabbricino M., Gallucci F., Licusati C. (2009). Ethanol steam reforming kinetics of a Pd–Ag membrane reactor. International Journal of Hydrogen Energy, 34, pp. 4747-4754.
    Tournier G., Pijolat C. (2005). Selective filter for SnO2-based gas sensor: application to hydrogen trace detection. Sensors and Actuators B: Chemical, 106, pp. 553-562.
    Uemiya S., Matsuda T., Kikuchi E. (1991). Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science, 56, pp. 315-325.
    Vadlamudi V.K., Palanki S. (2011). Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications. International Journal of Hydrogen Energy, 36, pp. 3364-3370.
    Xie P., Murdoch L.C., Ladner D.A. (2014). Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. Journal of Membrane Science, 453, pp. 92-99.
    Yang J.Y., Komaki M., Nishimura C. (2007). Effect of overlayer thickness on hydrogen permeation of Pd60Cu40/V-15Ni composite membranes. International Journal of Hydrogen Energy, 32, pp. 1820-1824.
    Zhang J., Liu D., He M., Xu H., Li W. (2006). Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science, 274, pp. 83-91.
    Zhang Y., Zhang G., Zhao Y., Li X., Sun Y., Xu Y. (2012). Ce–K-promoted Co–Mo/Al2O3 catalysts for the water gas shift reaction. International Journal of Hydrogen Energy, 37, pp. 6363-6371.
    林昶宏(2015年6月),“鈀膜分離氫氣之研究:流場設計與界面質量輸送”。國立成功大學航空太空工程學系碩士論文。
    黃鎮江(2008年5月),“燃料電池”。滄海書局-鼎隆圖書股份有限公司。
    經濟部能源局(2014年4月),“2014年能源產業技術白皮書”。
    曲新生,陳發林(2006年4月),“氫能技術”。五南圖書出版股份有限公司。
    徐南平,邢衛紅,趙宜江(2004年4月),“無機膜分離技術與應用”。化學工業出版社。
    陳維新(2015a年5月/四版),“生質物與生質能”。高立圖書有限公司。
    陳維新(2015b年2月/八版)。“能源概論”。高立圖書有限公司。
    陳維新(2015c年2月/二版),“綠色能源與永續發展”。高立圖書有限公司。
    陳維新,江金龍(2015年2月/十四版),“空氣污染與控制”。高立圖書有限公司。
    朱秦億(2007年6月),“鈀及鈀銀複合膜之製備特性分析及其氫/氮選透性之研究”。國立成功大學化學工程系博士論文。
    市川勝(2009年8月),“圖解氫能源”。世茂出版有限公司。

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE