簡易檢索 / 詳目顯示

研究生: 張簡旭珂
JangJian, Shiu-Ko
論文名稱: 氟化有機矽玻璃作為積體電路製程中低介電常數材料應用之特性研究
Investigation and Characterization of Fluorine Modified Organosilicate Glass for Low Dielectric Constant Material Application in Ultra-Large Scale Integrated Circuit
指導教授: 黃文星
Hwang, Weng-Sing
劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 168
中文關鍵詞: 積體電路有機矽玻璃低介電常數
外文關鍵詞: ULSI, Low-k, OSG, Fluorine
相關次數: 點閱:110下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的主要目的為研究並開發出適用於深次微米積體電路製程的下一世代低介電常數材料。吾人利用電漿輔助化學氣相沉積法在矽基材上沉積含氟之有機矽酸鹽玻璃薄膜,同時亦沉積未含氟之有機矽酸鹽玻璃作為對照實驗組。

      在本論文的第一部分將討論初鍍膜的材料特性。吾人改變不同的沉積溫度及反應前驅物的氟流量,並利用多種分析方式來瞭解初鍍膜的物理及化學特性。在物理特性方面,吾人利用多波長橢圓光學儀來量測鍍膜的厚度及折射率;掃瞄式電子顯微鏡觀察鍍膜截面形態並量測鍍膜厚度;電容–電壓及電流–電壓法來研究鍍膜的介電常數、漏電流強度與崩潰電場強度;奈米壓痕量測器研究鍍膜的機械特性。結果顯示,相較於氟流量的改變,沉積溫度對鍍膜的物理特性有較大的影響,沉積溫度越高,鍍膜的排列越緊密,因此其機械強度與電性表現越佳;而氟流量越高,其結果亦顯示鍍膜的機械強度與電性表現有明顯的改善。在化學特性上,使用X光光電子能譜分析鍍膜的鍵結形態與成份含量;傅利葉轉換紅外線光譜儀分析鍍膜的化學鍵結形態,並從其圖譜中利用主要化學鍵結的相對強度來計算鍍膜中各個成份的相對含量。結果顯示,初鍍膜中的化學鍵結形態與鍵結角度會隨著不同的沉積溫度與氟含量而改變。當沉積溫度越高時,鍍膜的鍵結形態會趨向於較堅固的網狀結構;而氟流量越高時,除了Si–F鍵結的相對強度越強外,Si–O的鍵結位置亦會往高波數的方向移動,即所謂的藍位移。吾人經由上述的實驗結果,推導出可能且合理的反應機構,此反應機構可應用於此一化學反應系統中反應參數的最佳化。

      在論文的第二部分中,吾人除了探討初鍍膜的熱穩定外,並選擇較佳條件的鍍膜,將其實際地應用在積體電路後段製程整合裡。在鍍膜的熱穩定性方面,吾人將上述不同條件的初鍍膜經過7次的熱處理,藉此模擬介電層在後段製程中所受到的熱應力。再經由上述的物理與化學特性分析,結果顯示較高沉積溫度與氟含量的初鍍膜具有較佳的熱穩定性,而且鍍膜中大多數的不穩定鍵結與未鍵結的游離分子在第一次的熱處理過程裡,便會從鍍膜的結構中移除,使得鍍膜的鍵結形態重整,趨向於更穩定的網狀結構。而在後段製程整合中,吾人使用四點抗彎黏著力測試器量測初鍍膜與其他材料的附著力;除此,並利用黃光與蝕刻的技術,將較佳條件的初鍍膜,定義出雙鑲嵌結構後填入銅導線。其結果顯示本研究中的鍍膜能真正應用於下一世代的積體電路後段製程裡。

      The objective of this study is to investigate and develop a suitable low dielectric material (Low-k) and its integration for the application of the deep submicron ultra-large scale integrated circuits (ULSI). The fluorine-modified organosilicate glass (FOSG) composite thin films were deposited on silicon substrates by plasma enhanced chemical vapor deposition method (PECVD). The fluorine-free organosilicate glass (OSG) was also deposited for a comparison with the FOSG film.

      In the first section, the physical and chemical characteristics of the as-deposited films were investigated by varying the deposition temperature and the fluoride flow ratio. In the part of physical characteristics, the thickness and refractive index of the as-deposited films were measured by spectroscopic ellipsometry. The cross-section micrographic and thickness of the composite films were observed by scanning electron microscopy (SEM). The capacitance–voltage (C–V) and current–voltage (I–V) measurements were carried out to investigate the permittivity, leakage current density, and breakdown field strength of the as-deposited films. The nano-indenter was performed to measure the hardness and modulus of the as-deposited films. The results show that the deposition temperature dominates the physical characteristics in comparison with the fluoride flow ratio. As the deposition temperature increases, the solider films can be achieved; and as the fluoride flow ratio increases, the mechanical strength and electrical performance also can be improved. In the chemical characteristics part, the bonding configuration, film composition and quantity of the as-deposited films were determined by X-ray photoelectron spectroscopy (XPS). The Fourier transform infrared spectroscopy (FTIR) was used to study the bonding structure of the composite films. Also, the relative fluorine and carbon content of the films were calculated by the peak height of the main bonding from FTIR spectra, which was agreed with the results of XPS. The results exhibit that the bonding configuration and bonding angle of the composite films varies with different deposition temperature and fluoride flow ratio. As the deposition temperature increases, the porous structure of the films leads to more rigid network structure. As the fluoride flow ratio increases, not only the strength of Si–F peak increases, but also the Si–O peak location shifts to higher wavenumber that is so-called “blue-shift”. According to the aforementioned results, we propose the chemical reactions and mechanisms responsible for the formation of the composite films those can be applied to optimize the process parameters in this system.

      Not only the thermal stability of the as-deposited film, but also the integration of the backend of line (BEOL) in ULSI process were investigated in the second section. On the thermal stability side, the as-deposited films were subsequently annealed 7 times to simulate the effect of thermal budget on inter-metal dielectric (IMD) in current BEOL scheme. After examining the same physical and chemical characteristics, the results show that the films with higher deposition temperature and fluoride flow ratio lead to superior thermal stability. The unstable and free radicals of the film structure are almost released at the first annealing cycle. The annealing treatments result in the reorganization of film structure and leading the films to more stable network structure. On the side of BEOL integration, four point bending test was used to measure the film adhesion between the composite films and the barrier materials. In addition, the photo-lithography and etching techniques were carried out to pattern the dual Damascene structure and subsequently the interconnection metal was formed by copper filling. The results exhibit that the new Low-k material, FOSG, appears to be a promising low dielectric constant material for IMD application beyond the 130 nm technological node.

    中文摘要 I 英文摘要 III 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1-1 研究背景 1 1-1-1銅金屬連結導線(Cu interconnect) 6 1-1-2介電層材料(Dielectric materials) 9 1-2 研究目的 11 第二章 理論基礎 2-1介電材料(Dielectric Materials) 12 2-1-1 材料的極性與極化(Polarizability and Polarization) 12 2-1-2材料的介電行為 14 2-2低介電常數材料(Low Dielectric Materials,Low-k) 18 2-2-1介電材料對訊號傳遞之影響 18 2-2-2低介電常數材料的種類與製程 22 2-2-3 低介電常數材料的要求 26 2-2-4低介電常數材料的合成 31 2-3化學氣相沉積法(Chemical Vapor Deposition,CVD) 49 第三章 實驗方法與步驟 3-1實驗流程 53 3-2介電薄膜沉積 53 3-2-1薄膜沉積設備 53 3-2-2反應前趨物與沉積條件 54 3-3分析儀器 60 3-3-1多波長光學反射儀 (Spectroscopic Reflectometery) 60 3-3-2多波長光學橢圓儀 (Spectroscopic Ellipsometery) 63 3-3-3光學模型 (Dispersion Model) 67 3-3-4傅利葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer) 72 3-3-5 X光光電子能譜儀 (X-ray Photoelectron Spectroscopy) 75 3-3-6奈米微壓痕試驗機 (Nano-Indenter) 77 3-3-7四點抗彎附著力測試機 80 3-3-8 電容–電壓與電流–電壓量測分析儀 (C–V and I–V Analyzer) 83 3-3-9 穿透式電子顯微鏡 (Transmission Electron Microscopy) 83 3-4雙鑲嵌製程 (Damascene Process) 87 第四章 結果與討論 4-1 Low-k初鍍薄膜之特性 90 4-1-1沉積速率與光學特性 90 4-1-2成分組成與鍵結型態 98 4-1-3機械特性 116 4-1-4電性分析 123 4-2熱處理後Low-k薄膜之特性 129 4-2-1光學特性 129 4-2-2成分組成與鍵結型態 132 4-2-3機械特性與電性分析 140 4-3 Low-k薄膜之整合與應用 143 第五章 結論 151 參考文獻 153

    1. R. H. Havemann, “Overview of Process Integration Issue for Low k Dielectrics”, Mat. Res. Soc. Symp. Proc. 511, 3 (1998).

    2. P. J. Wolf, “Overview of Dual Damascene Cu/Low-k Interconnect”, International Sematech., Augest (2003).

    3. H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001

    4. C. K. Hu, K. P. Rodbell, T. Sullivan, K. Y. Lee and D. P. Bouldin, “Low-k Dielectric Materials for Advanced Interconnect Applications”, IBM J. Res. Development, 39, 465 (1995).

    5. J. R. Lloyd, “Electromigration in Integrated Circuit Conductors”, J. Phys., 32, R109 (1999).

    6. C. Bruynseraede, D. Chiaradia, H. Wang, K. Maex, “EM-induced mass transport at the Cu/barrier interface: a new test structure for rapid assessment at user conditions”, IEEE IITC Proc., 21 (2003)

    7. E. Ogawa and P. S. Ho, “Electromigration Reliability Issues in Dual- Damascene Cu Interconnects”, IEEE Transactions on Reliability, 3 (2001).

    8. Stress-Induced Phenomena in Metallization, Am. Inst. Phys. Conf. Proc. No.263 (1992), No.305 (1994), No.374 (1996), No.418 (1997), No.491 (1999) and No.621 (2001).

    9. Proceedings of IEEE Int. Reliability Physics Symp., 1991 to 2002.

    10. Proceedings of the Int. Interconnect Technology Conf. 1998-2002.

    11. M. T. Bohr, “ Interconnect Scaling- The Real Limiter to High Performance ULSI”, IEEE IEDM Proc., 241-242 (1995)

    12. S. P. Murarka, “Multilevel Interconnections for VLSI and GSI Era”, Mat. Sci. and Eng., 19, 87 (1997).

    13. D. M. Mattox, Handbook of physical vapor deposition (PVD) processing, Noyes, Westwood, N. J., 1998.

    14. T. T. Kodas, M. J. Hampden-Smith, The Chemistry of Metal CVD, WILEY-VCH, Weinheim, Germany, Ch.4 and Ch.5 (1994).

    15. S. R. Wilson, C. J. Tracy, Handbook of Multilevel Metallization for Integrated Circuits, Chap.1 (Noyes Publications, Park Ridge, New Jersey, USA, 1993).

    16. N. V. Parthasaradhy, Practical Electroplating handbook, Prentice Hall, Englewood Cliffs, U.A.S., p.179 (1989).

    17. C. A. Deckert, Plat. and Surf. Fin., 82, 48 (1995); C. A. Deckert, Plat. and Surf. Fin., 82, 58 (1995).

    18. International Technology Roadmap for Semiconductors 1999, (Semiconductor Industry Association).

    19. International Technology Roadmap for Semiconductors 2001, (Semiconductor Industry Association)

    20. International Technology Roadmap for Semiconductors 2003, (Semiconductor Industry Association)

    21. L. Peters, “Low-k Dielectrics”, Semiconductor International, June, 108(2000).

    22. S. Thagella, A. K. Sikder, and A. Kumar, “Tribological Issues and Modeling of Removal Rate of Low-k Films in CMP”, J. Electrochem. Soc. 151, G205 (2004)

    23. F. Zhang, A. A. Busnaina, and G. Ahmadi, “Particle Adhesion and Removal in Chemical Mechanical Polishing and Post-CMP Cleaning”, J. Electrochem. Soc., 146, 2665 (1999).

    24. B. Trednnick, J. Lee, K. Holland, and T. Bibby, No. 96-ISMIC-100P, CMP-MIC Proc., 107 (1996).

    25. Y. L. Wang, C. Liu, S. T. Chang, M. S. Tsai, M. S. Feng, and W. T. Tseng, “Chemical-mechanical polishing of low-dielectric-constant spin-on-glasses: film chemistries, slurry formulation and polish selectivity”, Thin Solid Films, 308-309, 550 (1997).

    26. I. H. Huang, J. R. Huang, Y. F. Cheng, K. C. Hung, and S. C. Chien, “Novel multiple resist patterning stacks for dual-damascene interconnection and resolution-enhanced patterns”, Proc. SPIE Int. Soc. Opt. Eng. 4346,
    265 (2001)

    27. P. S. Lysaght, I. Ybarra, H. Sax, G. Gupta, M. West, T. G. Doros, J. V. Beach, and J. Mello, “Clean solutions to the incoming wafer quality impact on lithography process yield limits in a dynamic copper/low-k research and development environment”, Proc. SPIE Int. Soc. Opt. Eng. 3998, 284 (2000)

    28. T. M. Moore, C. D. Hartfield, J. M. Anthony, B. T. Ahlburn, P. S. Ho, and M. R. Miller, “Mechanical characterization of low-K dielectric materials”, AIP Conf. Proc. 550, 431 (2001)

    29. E. D. Krasicka, T. M. Moore, and C. D. Hartfield, “Scanning acoustic microscopy stress measurements in electronic packaging”, AIP Conf. Proc. 449, 611 (1998)

    30. S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998)

    31. S. P. Jeng, “A planarized multilevel interconnect scheme with embedded low-dielectric-constant polymers for sub-quarter-micron applications”, VLSI Tech. Symp. Tech. Dig., 73 (1994)

    32. Z. C. Wu, “Physical and Electrical Characteristics of F- and C-Doped Low Dielectric Constant Chemical Vapor Deposited Oxides”, J. Electrochem. Soc. 148, F115 (2001)

    33. W. Chang, S. M. Jang, C. H. Yu, S. C. Sun, and M. S. Liang, “A manufacturable and reliable low-k inter-metal dielectric using fluorinated oxide (FSG)”, IEEE IITC Proc., 131 (1999).

    34. J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS”, IEEE VLSI Proc., 59 (1994).

    35. T. Fukuda, T. Hosokawa, Y. Nakamura, K. Katoh, and N. Kobayashi, “Highly reliable SiOF film formation by ECR-CVD using SiF2H2”, IEEE VLSI Proc., 114 (1996).

    36. S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl. Phys. Lett., 68, 832 (1996).

    37. S. M. Han and E. Aydil, “Structure and chemical composition of fluorinated SiO2 films deposited using SiF4/O2 plasmas”, J. Vac. Sci. Technol. A, 15, 2893 (1997).

    38. M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of fluorosilicate glass for ULSI applications”, Thin Solid Films, 270, 503 (1995)

    39. W. S. Yoo, R. Swope, B. Sparks, and D. Mordo, “Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposition fluorinated silica glass films”, J. Mater. Res., 12, 70 (1997).

    40. A. Grill, “Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials”, J. Appl. Phys. 93, 1785 (2003).

    41. C. Kittel, Introduction to Solid State Physics,
    7th ed. 1996, New York: John Wiley and Sons, Ch. 13.

    42. H. Miyajima, R. Katsumata, Y. Nakasaki, and N. Hayasaka, “Water absorption properties of fluorine-doped SiO2 films using plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys., Part 1 35, 6217 (1996)

    43. G. Y. Lee, D. C. Edelstein, R. Conti, W. Cote, K. S. Low, D. Dobuzinsky, G. Feng, K. Dev, P. Wrschka, P. Shafer, R. Ramachandran, A. Simpson, E. Liniger, E. Simonyi, T. Dalton, T. Spooner, C. Jahnes, E. Kaltalioglu, and A. Grill, Advanced Metallization Conference, San Diego, CA, 3–5 October, 2000.

    44. A. Grill and V. Patel, “Novel Low-k Dual-phase Materials Prepared by PECVD”, Mater. Res. Soc. Symp. Proc., 612, D2.9 (2000).

    45. T. Nakano and T. Ohta, “Relationship Between Chemical Composition and Film Properties of Organic Spin-on Glass”, J. Electrochem. Soc., 142, 918 (1995).

    46. Z. Cui, J. M. Madsen, and C. G. Takoudis, “Rapid thermal oxidation of silicon in ozone”, J. Appl. Phys. 87, 8181 (2000)

    47. A. Kazor and I. W. Boyd, “Ozone-induced rapid low temperature oxidation of silicon”, Appl. Phys. Lett. 63, 2517 (1993).

    48. W. S. Yoo, R. Swope, and D. Mordo, “Plasma Enhanced Chemical Vapor Deposition and Characterization of Fluorine Doped SiliconDioxide Films”, Jpn. J. Appl. Phys. 36, 267 (1997)

    49. R. Swope, W. S. Yoo, J. Hsieh, H. Nijenhuis, S. Schuchmann, F. Nagy, and D. Mordo, in Proceedings of Dielectrics for ULSI Multilevel Interconnection (1996)

    50. C. E. Mohler, B. G. Landes, G. F. Meyers, B. J. Kern, K. B. Ouellette, and S. Magonov, “Porosity Characterization of porous SiLK Dielectric Films”, AIP Conf. Proc. 683, 562 (2003)

    51. Z. C. Wu, Z. W. Shiung, R. G. Wu, Y. L. Liu, W. H. Wu, B. Y. Tsui, M. C. Chen, W. Chang, P. F. Chou, S. M. Jang, C. H. Yu, and M. S. Liang, “Dielectric and Barrier Properties of Spin-On Organic Aromatic Low Dielectric Constant Polymers FLARE and SiLK”, J. Electrochem. Soc. 148, F109 (2001)

    52. J. C. Maisonobe, G. Passemard, C. Lacour, P. Motte, P. Noel, J. Torres, “SILK Compatibility with IMD Process Using Copper Metallization”, Microelectronics Engineering 50, 25 (2000)

    53. B. PANG, W. F. YAU, P. LEE, and M. NAIK, “A New CVD Process For Damascene Low k Appli-cations”, Semiconductor FABTECH 10th Edition, 285(1999)

    54. G. W. Ray, “Low Dielectric Constant Materials Integration Challenges”, Mat. Res. Soc. Symp. Proc. Vol.511, 199 (1998).

    55. W. W. Lee and P. S. Ho, “Low-Dielectric-Constant Materials for ULSI Interlayer-Dielectric Applications”, MRS Bull., 22, 19 (1997).

    56. T. Homma and Y. Murao, “A New Spin-on-Glass Film Treatment Technology Using a Fluoroalkoxysilane Vapor at Room Temperature”, J. Electrochem. Soc., 140, 2046 (1993).

    57. D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with polymer ILDs”, Thin Solid Films, 308, 523 (1997).

    58. A. Rajagopal, C. Gregoire, J. J. Lemaire, J. J. Pireaux, M. R. Baklanov, S. Vanhaelemeersch, K. Maex, and J. J. Waeterloos, “Surface characterization of a low dielectric constant polymer–SiLK polymer, and
    investigation of its interface with Cu”, J. Vac. Sci.
    Technol. B, 17, 2336 (1999).

    59. M. P. Andrews, P. Zhang, S. I. Najafi, K. K. Chao, and N. F. Pasch, “Spinnable and UV-patternable hybrid sol-gel silica glass for direct semiconductor dielectric layer manufacturing”, Proc. SPIE Int. Soc. Opt. Eng. 3678, 1252 (1999)

    60. A. E. Braun, “Photoresist Stripping Faces Low-k Challenges”, Semiconductor International, October, 64 (1999).

    61. A. S. Loke, “Evaluation of Copper Penetration in Low-k Polymer Dielectrics by Bias-temperature Stress”, Mat. Res. Soc. Symp. Proc. 564, 535 (1998).

    62. S. M. Han and E. S. Aydila, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998)

    63. H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, C. Muller, and M. Dietlmeier, “Low dielectric constant materials for interlayer dielectric,” Microelectronic Engineering, 40, 1 (1998).

    64. W. S. Yoo, R. Swope, B. Sparks, and D. Mordo, “Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposited fluorinated silica glass films”, J. Mater. Res. 12, 70 (1997)

    65. S. P. Kim, S. K. Choi, Y. Park and I. Chung, “Effect of water absorption on the residual stress in fluorinated silicon-oxide thin films fabricated by electron-cyclotron-resonance plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett., 79, 185 (2001)

    66. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 15, 2915 (1997)

    67. X. D. Pi, C. P. Burrows, and P. G. Coleman, “Fluorine in Silicon: Diffusion, Trapping, and Precipitation”, Phys. Rev. Lett. 90, 155901 (2003)

    68. T. Hara, K. Sakamoto, F. Togoh, H. Yang, and D. R. Evans, “Thermal Stability and Interfacial Reaction of Barrier Layers with Low-Dielectric-Constant Fluorinated Carbon Interlayer”, Jpn. J. Appl. Phys., Part 2 39, L506 (2000)

    69. D. Shamiryan1, T. Abell, F. Iacopi1, and K. Maxe1, “Low-k dielectric Materials”, MaterialsToday, 34, January 2004

    70. M. ONeill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner and E. Karwacki, “Low-k Materials by Design”, Semiconductor International, June 2002

    71. C. J. Hawker, J. L. Hedrick, R. Miller, W. Volksen, "Supramolecular Approaches to Nanoscale Dielectric Foams for Advanced Microelectronic Devices," Materials Research Society Bulletin, 54 (2000)

    72. J. L. Hedrick, "Templating Nanoporosity in Thin Film Dielectric Insulators," Adv. Mater., 10, 1049 (1998)

    73. A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky, and E. Simonyi, "Porous silica materials as Low-k Dielectrics for Electronic and Optical Interconnects," Thin Solid Films, 398-399, 513 (2001)

    74. S. Yu, T. K. S. Wong, K. Pita, and X. Hu, “Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric”, J. Vac. Sci. Technol. B 20, 2036 (2002)

    75. C. Jin, S. Lin, and J.T. Wetzel, “Evaluation of Ultra-Low-k Dielectric Materials for Advanced Interconnects”, J. Electronic Materials, 30, 284 (2001)

    76. J. Iacoponi, “Status and Future prospects for low k interconnect metrology”, International Sematech., March (2003)

    77. Alexander E. Braun, “Low-k Integration Advances With Hesitation”, Semiconductor International, May (2003)

    78. A. S. Grove, “Mass transfer in semiconductor technology,” Ind. and Eng. Chem., 58, 48 (1966).

    79. B. Chapman, Glow Discharge Process, (John Wiley and Sons, New York, 1980).

    80. R. M. A. Azzam and N. M. Bashara, Ellipsometery and Polarized Light, (North-Holland, Amsterdam, 1987).

    81. J. C. Jans, R. W. Hollering, and M. Erman, in Analysis of microelectronic materials and devices, M Grasserbauer and H. W. Werner, editor, (John Wiley & Sons, NY, 1996).

    82. M. Ohring, Reliability and Failure of Electronic Materials and Devices, (Academic Press, CA, 1998)

    83. P. Y. Yu, M. Cardona, Fundamentals of Semiconductors–Physics and Materials Properties, (Springer-Verlag, Germany, 1996)

    84. Lecture Topics on Ellipsometery and Reflectometery, from Rudolph Technology Inc..

    85. B. G. Streetman, Solid State Electronic Devices, 4th Edition (Prentice-Hall, NJ, 1995).

    86. W. Thrib, “Optical Properties and Porous Silicon”, Surf. Sci. Rep. 29, 91 (1997)

    87. E. Pelletier, Handbook of Optical Constants of Solids II, E. D. Palik, Editor, (Academic, NY, 1991).

    88. R. E. Whan, ASM Handbook-Materials Characterization (ASM, 1986).

    89. D. Briggs and M. P. Seah, Practical Surface Analysis, Volume 1– Auger and X-rayPhotoelectron Spectroscopy, 2nd Edition (Wiley, Chichester, 1990).

    90. H. C. Liou and J. Pretzer, “Effect of Film Thickness and Cure Temperature on the Mechanical Properties of Fox Flowable Oxide Thin Films”, Mater. Res. Soc. Symp. Proc., 565, 239 (1999).

    91. K. Jia, T.E. Fischer and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC composites”, Nanostruct. Mater., 10, 875 (1998).

    92. W. C. Oliver, G. M. Pharr., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mat. Res. 7, 1564 (1992).

    93. H.C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films”, Thin Solid Films, 335, 186 (1998).

    94. Q. Wen, Q. Ma, and D.R. Clarke, “In-situ fluorescence strain sensing of the stress in interconnects”, Mater. Res. Soc. Symp. Proc., 391, 91 (1995)

    95. Q. Ma, “A Four-Point Bending Technique for Studying Subcritical Crack Growth in Thin Films and at Interfaces”, J. Mater. Res., 12, (1997).

    96. P. G. Charalambides, H. C. Cao, J. Lund, and A. G. Evans, “Development of a Test Method for Measuring the Mixed Mode Fracture Resistance of Bimaterial Interfaces”, Mechanics of Materials, 8, 269 (1990).

    97. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Biomaterial Interfaces”, J. Appl. Mech., 111, 77 (1989).

    98. P. Hirsch, Electron Microscopy of thin Crystals, Robert E. Krieger, New York (1977)

    99. L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S. Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin Films: Preparation by Plasma-Enhanced Chemical Vapor Deposition from Tetramethylsilane”, J. Electrochem. Soc. 148, F148 (2001)

    100. S. Mikoshiba and S. Hayase, “Preparation of low density poly(methylsilsesquioxane)s for LSI interlayer dielectrics with low dielectric constant. Fabrication of Ångstrom size pores prepared by baking trifluoropropylsilyl copolymers”, J. Mater. Chem., 9, 591 (1999).

    101. C. V. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. W. Rhee, P. M. Rice, M. F. Toney, M. Trollsas, and D. Y. Yoon, “Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates”, Chem. Mater., 11, 3080 (1999).

    102. Q. Wu and K. K. Gleason, “Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, J. Vac. Sci. Technol. A 21, 388 (2003)

    103. G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B 28, 3225 (1983).

    104. M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins”, J. Electrochem. Soc. 145, 2861 (1998).

    105. M. G. Albrecht and C. Blanchette, “Materials issues with thin film hydrogen silsesquioxane low K dielectrics”, J. Electrochem. Soc. 145, 4019 (1998).

    106. P. Bornhauser and G. Calzaferri, “Normal coordinate analysis of H8Si8O12”, Spectrochim. Acta, Part A 46, 1045 (1990).

    107. P. Bornhauser and G. Calzaferri, “Ring-Opening Vibrations of Spherosiloxanes”, J. Phys. Chem., 100, 2035 (1996).

    108. C. Marcolli and G. Calzaferri, “Vibrational Structure of Monosubstituted Octahydrosilasesquioxanes”, J. Phys. Chem., 101, 4925 (1997).

    109. J. A. Theil, J. G. Brace, and R. W. Knoll,
    “Carbon content of silicon oxide films deposited by room temperature plasma enhanced chemical vapor deposition of hexamethyldisiloxane and oxygen”, J. Vac. Sci. Technol. A 12, 1365 (1994).

    110. C. Rau and W. Kulisch, “Mechanisms of plasma polymerization of various silico-organic monomers”, Thin Solid Films 249, 28 (1994).

    111. H. G. Pryce Lewis, D. J. Edell, and K. K.
    Gleason, “Pulsed-PECVD Films from Hexamethylcyclotrisiloxane for Use as Insulating Biomaterials”, Chem. Mater. 12, 3488 (2000).

    112. H. G. Pryce Lewis, T. B. Casserly, and K. K. Gleason, “Hot-Filament Chemical Vapor Deposition of Organosilicon Thin Films from Hexamethylcyclotrisiloxane and Octamethylcyclotetrasiloxane”, J. Electrochem. Soc.
    148, F212 (2001).

    113. T. R. Crompton, The Chemistry of Organic Silicon Compounds, edited by S. Patai and Z. Rappoport (Wiley, New York, 1989).

    114. A. M. Wrobel, M. Kryszewski, and M. Gazicki, J. Macromol. Sci., Chem. A 20, 583 (1983).

    115. L. H. Lee, W. C. Chen, and W.C. Liu, “Structural control of oligomeric methyl silsesquioxane precursors and their thin-film properties”, J. Polym. Sci., Part A: Polym. Chem. 40 A, 1560 (2002).

    116. V. Pankov, J. C. Alonso, and A. Ortiz, “Analysis of structural changes in plasma-deposited fluorinated silicon dioxide films caused by fluorine incorporation using ring-statistics based mechanism”, J. Appl. Phys., 86, 275 (1999).

    117. G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, “Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy”, J. Vac. Sci. Technol. B 5, 530 (1987).

    118. Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films”, J. Appl. Phys. 90, 3367 (2001).

    119. N. Wright and M. J. Hunter, “Organosilicon Polymers Infrared Spectra of The Methylpolysilicon”, J. Am. Chem. Soc. 69, 803 (1947).

    120. R. Zink and K. Hassler, “CMe3SiX3 and SiMe3SiX3 (X=H, F, Cl, Br, I): a combined ab initio and vibrational spectroscopic study”, Spectrochim. Acta, Part A 55, 333 (1999).

    121. D. C. McKean and I. Torto, “Infrared studies of
    SiH bonds and the structures of methylsilylamines and ethers”, Spectrochim. Acta, Part A 49, 1095 (1993).

    122. R. E. Richards and H. W. Thompson, “Infrared Spectra of Compounds of High Molecular Weight. Part IV. Silicones and Related Compounds”, J. Chem. Soc. 124 (1949).

    123. Aldrich Library of FTIR spectra, edited by C. J. Pouchert, 1985.

    124. W. C. Liu, C. C. Yang, W. C. Chen, B. T. Dai, and M. S. Tsai, “The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing”, J. Non-Cryst. Solids 311, 233 (2002).

    125. R. Swope and W. S. Yoo, “Analysis of Fourier transform infrared spectra and peak shifts in plasmaenhanced chemical vapor deposited fluorinated silica glasses”, J. Vac. Sci. Technol. B 14, 1702 (1996)

    126. S. Lee and J. W. Park, “Effect of fluorine on dielectric properties of SiOF films”, J. Appl. Phys. 80, 5260 (1996)

    127. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 15, 2915 (1997).

    128. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Structure of fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 15, 2908 (1997)

    129. S. M. Han and E. S. Aydil, “Structure and chemical composition of fluorinated SiO2 films deposited using SiF4/O2 plasmas”, J. Vac. Sci. Technol. A 15, 2893 (1997).

    130. G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, “Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy”, J. Vac. Sci. Technol. B 5, 530 (1987).

    131. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)

    132. D. W. Oxtoby, N. H. Nachtrieb, and W. A. Freeman, Principles of Modern Chemistry, 2nd ed. (Saunders, Philadelphia, 1987)

    133. P. G. Pai. S. S. Chao, Y. Takagi, and G. Lucovsky, “Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 4, 689 (1986)

    134. J. S. Chou and S. C. Lee, “Effect of porosity on infrared-absorption spectra of silicon dioxide”, J. Appl. Phys., 77, 1805 (1995)

    135. A. Grill and V. Patel, “Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 79, 803 (2001).

    136. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer, Eden Prairie, MN, 1992)

    137. S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada,
    “Reduction Mechanism in the Dielectric Constant of Fluorine-Doped Silicon Dioxide Film”, J. Electrochem. Soc., 144, 2531 (1997).

    138. “Handbook of Chemistry and Physics”, 76th ed., edited by D. R. Lide and H. P. R Frederikse (Chemical Robber, Boca Raton, FL, 1995-1996)

    下載圖示 校內:2005-07-09公開
    校外:2006-07-09公開
    QR CODE