簡易檢索 / 詳目顯示

研究生: 柯定賢
Ko, Ting-Hsien
論文名稱: 合成螢光單體以製備具螢光之模版高分子膜用於螢光式感測肌酸酐
Synthesis of a fluorescent monomer for the fabrication of the imprinted fluorescent polymer film to selectively detect creatinine via fluorescence
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 高效液相層析肌酸酐模版高分子螢光單體
外文關鍵詞: HPLC, fluorescence spectrophotometer, imprinted factor, creatine, creatinine, imprinted fluorescent polymer, selectivity, fluorescent monomer
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (Creatinine) 為診斷人體腎功能重要的因子,也是肌肉中肌酸代謝的產物,所以人體肌酸酐的含量為相當重要的一個指標,本實驗企圖利用4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) 進行鹵素取代反應生成4-(2-hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBD-1), 再和ethyloyl chloride反應合成4-(2-acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole
    (NBD-2),將合成的螢光單體和中間產物利用FT-IR、1H NMR和13C NMR進行定性之鑑定,確定合成的各階段產物和預期之結構相同。另外合成的螢光單體亦進行螢光穩定性的探討,並且量測不同濃度的螢光單體之螢光強度,得知低濃度時,螢光強度會隨濃度之增加而上升;在高濃度時,螢光強度則因濃度上昇而下降,同時,此螢光單體在不同溶劑下之三維螢光光譜圖亦一倂討論。
    將此螢光單體、肌酸酐與功能性單體甲基丙烯酸 (methacrylic acid)一起混合,在交聯劑乙二醇二甲基丙烯酸酯 (ethylene glycol dimethacrylate) 作用下,進行高分子聚合反應,以製備肌酸酐螢光模版高分子,並且利用高壓液相層析儀檢測模版高分子粉末之吸附,在單成份溶液中,模版高分子吸附肌酸酐的量為1.497 ± 0.088 mg creatinine/g MIP,非模版高分子吸附肌酸酐的量為0.652 ± 0.057 mg creatinine/g NIP,吸附肌酸的量0.361 ± 0.091 mg creatine/g MIP,模印因子為2.313 ± 0.242,吸附肌酸的量為0.397 ± 0.086 mg creatine/g NIP,選擇率為4.357 ± 0.918;在肌酸和肌酸酐雙成份溶液吸附中,模版高分子吸附肌酸酐的量為1.094 ± 0.052 mg creatinine/g MIP,吸附肌酸的量為0.222 ± 0.083 mg creatine/g MIP,模印因子2.513 ± 0.265,非模版高分子吸附肌酸酐的量為0.439 ± 0.043 mg creatinine/g NIP,吸附肌酸的量為0.217 ± 0.045 mg creatine/g NIP,選擇率為5.561 ± 1.836,顯示在雙成份溶液中進行吸附,模版高分子之選擇率和模印因子均較佳。
    對此模版高分子研磨顆粒進行沉降實驗,並對沉降數據進行模擬。以螢光檢測模版高分子粉末之吸附,模版高分子吸附肌酸酐之螢光變化量為3.32% ± 0.70%,吸附肌酸後之螢光變化量為0.85% ± 0.27%,非模版高分子吸附肌酸肝之螢光變化量為0.92% ± 0.25%,則模印因子為3.91 ± 0.51,選擇率為3.60 ± 0.28,比較液相層析與螢光之檢測結果,顯示以螢光方式進行檢測之模印因子較高。
    以不同條件進行模版高分子膜之製備,在熱聚合條件下,交聯比1:6 (功能性單體 (MAA) 對交聯劑)進行吸附,並以螢光檢測,得知模印因子為2.27 ± 0.44,選擇率為1.98 ± 0.21。在交聯比1:5條件下,模印因子則為2.63 ± 0.45,選擇率為2.48 ± 0.39。若在光聚合條件下,以交聯比1:6製備所得之模版螢光材料進行吸附,以螢光進行檢測,得知模印因子為2.45 ± 0.49,選擇率為1.77 ± 0.25,在交聯比1:5條件下之模印因子則為2.88 ± 0.64,選擇率為2.85 ± 0.64,顯示交聯比1:5的情況下,模印因子和選擇率都比交聯比1:6者佳。
    綜合前述,已知以螢光單體進行聚合製備之模版材料,可有效地對肌酸酐進行較具專一性之吸附,在模印與選擇效應均顯著滿足的條件下,後續以螢光式進行檢測肌酸酐之可行性亦已確立。對於肌酸酐螢光檢測晶片之建立則具重大的突破性發展。

    4-Chloro-7-nitro-2,1,3-benzoxadiazole (1, NBD-Cl) was used as the precursor for the synthesis of a fluorescent monomer, 4-(2-acryloyloxyethylamino)-7-nitro- 2,1,3-benzoxadiazole (3, NBD-2). Compound (1) was first reacted with ethanolamine for the irreversible addition of nucleophile to form 4-(2-hydroxyethylamino)-7-nitro- 2,1,3-benzoxadiazole (2, NBD-1). Then, compound (2) was further reacted with acryloyl chloride reversibly for the formation of the target monomer, which is the fluorescent monomer (3). To identify the chemical structure as well as the purity of compound (3), TLC, HPLC, FTIR, and NMR of 1H and 13C were used to analyze the spectrum of this key compound and the intermediate from different aspects. Compound (3) was thus accomplished and confirmed and was further used for the fabrication of the creatinine imprinted fluorescent polymer membrane as well as monolith. The fluorescent effect of the fluorescent monomer as prepared was comparably superior to the others. The fluorescent stability of this monomer was also investigated. How the solvents and concentration of the fluorescent monomer influence the emission intensity as well as shift of the peak wavelength were also discussed. The sedimentation behavior of the imprinted fluorescent particles in solvent can be well fitted by a response model derived from a second-order time system.
    The fluorescent compound (3) was mixed with an initiator, 2,2-azobisisobutyronitrile (AIBN), another functional monomer, methacrylic acid (MAA), and the crosslinker, ethyl glycol dimethylacrylate (EGDMA) to form the pre-polymerization solution. The solution was then applied onto the surface of gold. Both heated polymerization and UV-irradiated polymerization were taken place to prepare the polymeric film imprinted with creatinine, respectively. After the extraction of creatinine templates by the porogen solvent, the imprinted fluorescent polymer film was prepared. Among all the polymerization conditions, the molar ratio of the functional monomer to the crosslinker affected the specific binding performance of the imprinted polymer matrix. It was discovered that the molar ratio of 1:5 (functional monomer: crosslinker) showed better results than the others. Consequently, 1:6 of this respective molar ratio was determined according to the comparison made from the experimental results. For the results from the fabrication of the imprinted polymer film, the imprinting effect and the specific binding capacity toward creatinine were both investigated. Thus, an imprinting factor of 2.63  0.45 and 2.88  0.64 could be achieved from the approach via heated polymerization and UV-polymerization, respectively. Additionally, a selectivity of 2.48  0.39 and 2.85  0.64 for creatinine against creatine could be obtained from both polymerizations. Therefore, both heated polymerization and UV-irradiated polymerization did show almost similar performance from the analytical results of creatinine.
    Both the imprinting effect and the selectivity from the screened imprinted fluorescent polymer particles were also confirmed by comparing the reading from the absorbance and the fluorescence. After the uptake of creatinine by the imprinted polymer particles, the binding capacities both detected from an HPLC and a fluorescence spectrophotometer were compared. The results of imprinting factor and selectivity both appeared that to carry out the specific detection of the creatinine from the combination of the imprinted materials and the fluorescent approach could achieve better results. In fact, to perform the analysis of the creatinine via the fluorescent approach is much more efficient in the detection time as well. In addition, while the creatinine/ creatine mixture was uptaken by the imprinted polymer particles, the results appeared that the imprinting effect of the polymer toward creatinine template was enhanced due to the presence of creatine.
    Concluded from the above results, the imprinted fluorescent polymer materials could specifically rebind creatinine molecules after the effective formation of the recognition cavity sites with respect to creatinine molecules. The feasibility to detect creatinine via the fluorescent approach was also verified. It is further beneficial to establish the fluorescent chip for the specific and efficient detection of creatinine.

    中文摘要……………………………………………………………………………….I 英文摘要……………………………………………………………………………..III 總目錄………………………………………………………………………………...V 表目錄……………………………………………………………………………...VIII 圖目錄………………………………………………………………………………..IX 第一章 緒論…………………………………………………………………………..1 1-1分子模版高分子 (Molecularly imprinted polymers) …………………..………1 1-2模版分子之辨識機制………………………………………………….………….2 1-2-1共價聚合法 …………………………………………………………………….2 1-2-2 非共價聚合法……………………………………………………….…………2 1-2-3 半共價聚合法………………………………………………………………….2 1-3 分子模版高分子的架構………………………………………………………….3 1-3-1模版分子 (Template) …………………………………………………...……...3 1-3-2 功能性單體(Functional monomer) …………………………………….……...3 1-3-3 交聯劑 (Crosslinker) ………………………………………………………….3 1-3-4 溶劑(造孔劑) (Porogen) ………………………………………………….……4 1-3-5 起始劑 (Initiator) …………………………………………………………...…4 1-4 球型分子膜板高分子之聚合…………………………………………………….5 1-4-1總體聚合法 (Bulk polymerization) ………………………………..………….5 1-4-2 懸浮聚合法 (Suspension polymerization) …………………………..………..5 1-4-3 沉澱/分散聚合法 (Precipitation/dispersion polymerization) ……….……..…6 1-4-4 多步驟膨潤聚合法 (Multi-step swelling polymerization) ………….………..7 1-4-5 表面聚合法(Surface polymerization) ……………………………….………...8 1-5感測器的辨識…………………………………………………………..…………9 1-5-1光學感測………………………………………………………………...……..10 1-5-2壓電感測………………………………………………………………….……11 1-5-3電化學感測……………………………………………………………….……12 1-6肌酸酐 (Creatinine) ……………………………………………………………..12 1-7螢光原理 (Principle of fluorescence) …………………………………………..14 1-7-1發光光譜學 (Luminescence Spectroscopy) ……………………………….…14 1-7-2 螢光原理 (Principle of fluorescence) ………………………………………..14 1-7-3影響螢光及磷光的變數………………………………………………….……15 第二章 實驗方法,材料與儀器…………………………………………………….17 2-1螢光單體合成……………………………………………………………………18 2-1-1 4-(2-Hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole之合成…………...18 2-1-2 4-(2-Acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole之合成……….18 2-2螢光分子模版高分子研磨顆粒之聚合…………………………………………18 2-2-1 配製預聚合液………………………………………………………………...18 2-2-2分子模版高分子之聚合………………………………………………………19 2-3 高分子膜之製備………………………………………………………………...19 2-3-1 預聚合溶液之配製……………………………………………………………19 2-3-2. 高分子膜之製備……………………………………………………………..20 2-4 模版高分子之模版去除………………………………………………………...21 2-4-1 高分子粉末模版脫附………………………………………………………...21 2-4-2 高分子膜模版脫附…………………………………………………………...21 2-5 單一成份(肌酸酐) 溶液之吸附實驗(高分子粉末) …………………………..22 2-6肌酸酐螢光模版高分子的螢光強度測定………………………………………25 2-6-1 高分子粉末之吸附後之螢光式檢測………………………………………...25 2-6-2 高分子薄膜之吸附後之螢光式檢測………………………………………...25 實驗藥品……………………………………………………………………………..26 實驗儀器……………………………………………………………………………..27 第三章 結果與討論………………………………………………………………..28 3-1功能性螢光單體之合成與探討…………………………………………………29 3-1-1 NBD-1和NBD-2之FT-IR圖譜…………………………………………….....30 3-1-2 NBD-1之1H NMR 圖譜……………………………………………………...32 3-1-3 NBD-2之1H NMR 圖譜……………………………………………………...33 3-1-4 13C圖譜之DEPT-90和DEPT-135……………………………………….........35 3-1-5 NBD-1之13C NMR 圖譜……………………………………………………..36 3-1-6 NBD-2 13C NMR 圖譜………………………………………………….…….37 3-2 螢光單體的性質探討…………………………………………………………...38 3-2-1 NBD-1和NBD-2之螢光性比較…………. …………………………………38 3-2-2 螢光單體的螢光穩定性測試………………………………………………...40 3-2-3 螢光單體於不同溶劑中之三維光譜圖……………………………………...41 3-3分子模版高分子粉末……………………………………………………………45 3-3-1 高分子膨潤實驗……………………………………………………………...45 3-3-2 分子模版高分子沉降實驗…………………………………………………...46 3-3-3 模版與非模版高分子吸附實驗( HPLC) …………………………………....50 3-3-4 模版與非模版高分子吸附實驗(螢光) …………………………………… ...58 3-4分子模版高分子薄膜……………………………………………………………62 3-4-1 模版高分子膜掃描式電子顯微鏡圖………………………………………...62 3-4-2 模版高分子吸附實驗………………………………………………………...64 第四章 結論…………………………………………………………………………74 表目錄 表1-4-1 球形分子模版高分子聚合方法之優缺點…………………………………9 表3-1-1 NMR 碳譜峰值的正負值…………………………………………………35 表3-2-1 溶劑的極性………………………………………………………………...43 表3-3-1 模版高分子顆粒於水溶液中之螢光檢測………………………………..48 表 3-3-2 模版與非模版顆粒高分子對單一成份溶液之吸附………………….…52 表3-3-3模版及非模版高分子顆粒對肌酸/肌酸酐雙成份溶液之吸附比較表…..54 表3-3-4 模版高分子吸附後造成的螢光變化……………………………………...60 表3-3-5 扣除水後分子模版高分子吸附物質後的螢光變化……………………...60 表4-4-1 接觸角……………………………………………………………………...63 表3-4-2 以交聯比為1:6方式進行熱聚合之模版高分子吸附後之螢光變化……64 表3-4-3 以交聯比為1:5方式進行熱聚合之模版高分子吸附後之螢光變化….66 表3-4-4 以交聯比為1:6方式進行光聚合之模版高分子吸附後之螢光變化….68 表3-4-5 以交聯比為1:5方式進行光聚合之模版高分子吸附後之螢光變化….70 表3-4-6 MIP 模印因子、MIP 選擇率和NIP 選擇率………………………….72 圖目錄 圖1-2-1 分子模版高分子合成示意圖……………………………………………….1 圖1-4-1 以光學顯微鏡拍攝以總體聚合法製備之研磨過篩後的模版高分子顆粒放大圖…………………………………………………………….……….5 圖1-4-2 懸浮聚合法流程示意圖。(A)單體和起始劑於分散相中,加入界面活性 劑使之形成微胞;(B)聚合成高分子顆粒。……………………………..6 圖1-4-3 沉澱/分散聚合法流程之示意圖。(A)將模版分子、單體和起始劑置於稀 薄的溶液中;(B)單體之間開始進行聚合;(C)在特定鏈長後高分子顆粒 會析出;(D)形成顆粒狀模版高分子。………………………..…………7 圖1-4-4 多步驟膨潤聚合法之流程示意圖………………………………………….8 圖1-4-5 表面聚合法之流程示意圖………………………………………………….8 圖1-5-1 分子模版高分子感測方式之統計分佈圖………………………………...10 圖1-5-2 表面電漿共振之示意圖…………………………………………………...11 圖1-5-4 電化學感測器的選擇……………………………………………………...12 圖1-5-1 Jaffé 法反應之主要步驟…………………………………………………..13 圖1-5-2 三酵素電極之化學式……………………………………………………...14 圖1-7-1 螢光及磷光發光系統的部份能階圖……………………………………...15 圖1-7-2 茀和聯苯之化學結構……………………………………………………...16 圖2-1 螢光單體4-(2-Acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole之合 成……………………………………………………………………………..19 圖2-2螢光模版高分子研磨顆粒之聚合示意圖……………………………………20 圖2-3螢光模版高分子薄膜之聚合示意圖…………………………………………21 圖2-4 模版高分子之製備結構圖…………………………………………………..22 圖2-5-1 肌酸酐水溶液之HPLC檢量線……………………………………………23 圖2-5-2 肌酸水溶液之HPLC檢量線………………………………………………24 圖2-5-3 肌酸和肌酸酐雙成份水溶液之HPLC檢量線……………………………24 圖3-1-1 螢光單體之反應流程圖…………………………………………………...29 圖3-1-2 4-(2-Hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole FT-IR光譜圖....31 圖3-1-3 4-(2-Acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole(NBD-2) 之 FT-IR 光譜圖………………………………………………………………31 圖3-1-4 NBD-1和NBD-2光譜圖比較……………………………………………32 圖3-1-5 4-(2-Hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole 1H NMR圖譜....33 圖3-1-6 4-(2-Acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole 1H NMR圖譜 ……………………………………………………………………………..34 圖 3-1-7 1H NMR雙鍵的判斷……………………………………………………35 圖3.1.7 4-(2-Hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole之13C NMR圖譜 ….…………………………………………………………………………...36 圖3.1.8 4-(2-Acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole 之13C NMR圖 譜……………………………………………………………………………37 圖3-2-1 NBD-Cl、NBD-1和NBD-2之螢光光譜圖……………………………38 圖3-2-2 NBD-1 螢光強度對濃度圖……………………………………………..39 圖3-2-3 NBD-2 螢光強度對濃度圖……………………………………………..40 圖3-2-4 NBD-1螢光的穩定性…………………………………………………...41 圖3-2-5 NBD-2 以DMSO為溶劑之螢光3D圖………………………………..42 圖3-2-6 NBD-2 以acetonetrile為溶劑之螢光3D圖……………………………42 圖3-2-7 NBD-2 以acetone為溶劑之螢光3D圖………………………………..43 圖3-2-8 NBD-2 以ethyl acetate為溶劑之螢光3D圖…………………………..43 圖3-2-9 NBD-1 之UV光譜圖…………………………………………………..44 圖3-2-10 NBD-2 之UV光譜圖…………………………………………………44 圖3-3-1 分子模版高分子膨潤之過程。(a) 0 s;(b) 1,000 s;(c) 2,000 s ……………………………………………………………………………..46 圖3-3-2 分子模版高分子在水中之吸光值對時間作圖…………………………...48 圖3-3-3 分子模版高分子顆粒懸浮在水中之吸光值對時間圖(小範圍時間)……49 圖3-3-4 MIP與NIP 萃洗前後之FT-IR圖譜……………………………………..50 圖3-3-5 肌酸酐 之FT-IR圖……………………………………………………….50 圖3-3-6 分子模版高分子顆粒在單成份溶液下的模印因子……………………...51 圖3-3-7 分子模版高分子顆粒在單成分溶液下的選擇率………………………...52 圖3-3-8 模版以及非模版高分子在單成份溶液下之吸附比較圖………………...53 圖3-3-9 肌酸之化學結構圖………………………………………………………...54 圖3-3-10 模版高分子對肌酸/肌酸酐雙成份溶液吸附之比較圖…………………55 圖3-3-11 非模版高分子在雙成份溶液吸附之選擇率…………………………….56 圖3-3-12 模版及非模版高分子在雙成份溶液下之吸附比較圖………………….56 圖3-3-13 模版高分子對單成份吸附選擇率之示意圖…………………………….57 圖3-3-14 模版高分子對雙成份吸附選擇率之示意圖…………………………….57 圖3-3-15 模版高分子對單成份吸附模印因子之示意圖………………………….58 圖3-3-16 模版高分子對雙成份吸附模印因子之示意圖………………………….58 圖3-3-17 肌酸酐(肌酸)對NBD-2 以不同比例混合下之螢光強度………………61 圖3-3-18 模版高分子粉末吸附之模印因子……………………………………….61 圖3-3-19 模版高分子粉末吸附之選擇率………………………………………….62 圖3-4-1 模版高分子(a)萃洗前和(b)萃洗後之SEM圖…………………………..63 圖3-4-2 非模版高分子(a)萃洗前和(b)萃洗後之SEM圖………………………..64 圖3-4-3 模版高分子熱聚合交聯比1:6之模印因子……………………………..65 圖3-4-4 模版高分子熱聚合交聯比1:6之選擇率………………………………..66 圖3-4-5 模版高分子熱聚合交聯比1:6之螢光吸附……………………………..66 圖3-4-6 模版高分子熱聚合交聯比1:5之模印因子……………………………..67 圖3-4-7 模版高分子熱聚合交聯比1:5之選擇率………………………………..68 圖3-4-8 模版高分子熱聚合交聯比1:5之螢光吸附……………………………..68 圖3-4-9 模版高分子光聚合交聯比1:6之模印因子……………………………..69 圖3-4-10 模版高分子光聚合交聯比1:6之選擇率………………………………..70 圖3-4-11 模版高分子光聚合交聯比1:6之螢光吸附…………………………….70 圖3-4-12 模版高分子光聚合交聯比1:5之模印因子……………………………..71 圖3-4-13 模版高分子光聚合交聯比1:5之選擇率………………………………..72 圖3-4-14 模版高分子光聚合交聯比1:5之螢光吸附……………………………..72

    [1] J. Haginaka, Monodispersed, Monodispersed, molecularly imprinted polymers as affinity-based chromatography media, Journal of Chromatography B, 2008, 866, 3–13.
    [2] D. A. Spivak, Optimization, evaluation, and characterization of molecularly imprinted polymers, Advanced Drug Delivery Reviews, 2005, 57, 1779–1794.
    [3] G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angewandte Chemie International Edition, 1995, 34, 1812–1832.
    [4] J. P. Schillemans, C. F. van Nostrum, Molecularly imprinted polymer particles: synthetic receptors for future meducune, Nanomedicine, 2006, 1(4), 437–447.
    [5] H. Yan, K. H. Row, Characteristic and synthetic approach of molecularly imprinted polymer, International Journal of Molecular Sciences, 2006, 7, 155–178.
    [6] Ansell, J. Richard, Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 151–165.
    [7] P. A. G. Cormack, A. Z. Elorza, Molecularly imprinted polymers: synthesis and characterisation, Journal of Chromatography B–Analytical Technologies in the Biomedical and Life Sciences, 2004, 804, 173–182.
    [8] A. Sergey, P. F. Anthony, Subrahmanyam S., Application of molecularly imprinted polymers in sensors for the environment and biotechnology, Sensor Review, 2001, 21, 292–296.
    [9] J. A. García-Calzóna, M. E. Díaz-García, Characterization of binding sites in molecularly imprinted polymers, Sensors and Actuators B–Chemical, 2007, 123, 1180–1194.
    [10] H. Karsten, M. Klaus, Molecularly imprinted polymers and their use in biomimetic sensors, Chemical Reviews, 2000, 100, 2495–2504.
    [11] R.-Y. Hsieh, H.-A. Tsai, M.-J. Syu, Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums, Biomaterials, 2006, 27, 2083–2089.
    [12] T. Takeuchi, T. Mukawa, J. Matsui, M. Higashi, K. D. Shimizu, Molecularly imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid, Analytical Chemistry, 2001, 73 (16), 3869–3874.
    [13] H. Kempe, M. Kempe, Novel method for the synthesis of molecularly imprinted polymer bead libraries, Macromolecular Rapid Communications, 2004, 25, 315–320.
    [14] A. G. Mayes, K. Mosbach, Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase Analytical Chemistry, 1996, 68, 3769–3774.
    [15] R. Steven, S. Rimmer, Surface molecularly imprinted polymer core-Shell Particles., Advanced Functional Materials, 2004, 14, 553–561.
    [16] X. Kan, Q. Zhao, Z. Zhang, Z. Wang, J.-J. Zhu, Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition, Talanta, 2008, 75, 22–26.
    [17] G. Ciardelli, C. Borrelli, D. Silvestri, C. Cristallini, N. Barbani, P. Giusti, Supported imprinted nanospheres for the selective recognition of cholesterol, Biosensors and Bioelectronics, 2006, 21, 2329–2338.
    [18] K. Hosoya, K. Yoshizako, N. Tanaka, K. Kimata, T. Araki, J. Haginaka, Uniform-size macroporous polymer-based stationary phase for HPLC prepares through molecular imprinting technique, Chemistry Letters, 1994, 1437–1438.
    [19] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka, Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography Structural contribution of cross-linked polymer network on specific molecular recognition, Journal of Chromatography A, 1996, 728, 139–147.
    [20] Y. Lu, C.-L. Yan, S.-Y. Gao, Preparation and recognition of surface molecularly imprinted core–shell microbeads for protein in aqueous solutions, Applied Surface Science, 2009, 255, 6061–6066.
    [21] B. Sellergren, B. Ruckert, Hall, J. H. Andrew, Layer-by-Layer Grafting of Molecularly Imprinted Polymers via Iniferter Modified Supports, Advanced Materials, 2002, 14, 1204–1208.
    [22] O. Y. F. Henry, D. C. Cullen, S. A. Piletsky, Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review, Analytical and Bioanalytical Chemistry, 2005, 382, 947–956.
    [23] M. Á vila, M. Zougagh, A. Escarpa, Á. Rĭos, Molecularly imprinted polymers for selective piezoelectric sensing of small molecules, Trends in Analytical Chemistry, 2007
    [24] M. C. Blanco-Ló pez, M. J. Lobo-Castaň ón, A. J. Miranda-Ordieres, P. Tun˜ o′ n-Blanco, Electrochemical sensors based on molecularly imprinted polymers, Trends in Analytical Chemistry, 2004, 23, 36–48.
    [25] F. Lanza, B. Sellergren, Method for synthesis and screening of large groups of molecularly imprinted polymers, Analytical Chemistry, 1999, 71, 2092–2096.
    [26] W. M. Mullett, P. Martin, J. Pawliszyn, In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol, Analytical Chemistry, 2001, 73, 2383–2389.
    [27] M. Jakusch, M. Janotta, B. Mizaikoff, Molecularly imprinted polymers and infrared evanescent wave spectroscopy. A Chemical Sensors Approach, Analytical Chemistry, 1999, 71, 4786–4791.
    [28] H. Kim, D. A. Spivak, New insight into modeling non-covalently imprinted polymers, Journal of the American Chemical Society, 2003, 125, 11269–11275.
    [29] L. Malosse, P. Buvat, D. Ad`esb, A. Sioveb, Detection of degradation products of chemical warfare agents by highly porous molecularly imprinted microspheres, Analyst, 2008, 133, 588–595.
    [30] I. Śanchez-Barraģan, K. Karim, J. M. Costa-Ferńandez, Sergey A. Piletsky, A. Sanz-Medel, A molecularly imprinted polymer for carbaryl determination in water, Sensors and Actuators B, 2007 , 123, 798–804.
    [31] A. Kugimiya, T. Takeuchi, Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid, Biosensors and Bioelectronics, 2001, 16, 1059–1062.
    [32] K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, G. P. Robertson, Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy, Analytica Chimica Acta, 2003, 489, 191–198.
    [33] J. Du, L. Shen., J. Lu, Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material, Analytica Chimica Acta, 2003,489, 183–189.
    [34] I. Surugiu, J. Svitel, L. Ye, K. Haupt, B. Danielsson, Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody, Analytical Chemistry, 2001, 73, 4388–4392.
    [35] C. Luo, M. Liu, Y. Mo, J. Qu, Y. Feng, Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element, Analytica Chimica Acta, 2001, 428, 143–148.
    [36] N. Tsuru , M. Kikuchi, H. Kawaguchi, S. Shiratori, A quartz crystal microbalance sensor coated with MIP for‘‘Bisphenol A’’ and its properties, Thin Solid Films, 2006, 499, 380–385.
    [37] H. Peng, C. Liang, A. Zhoua, Y. Zhang, Q. Xie, S. Yao, Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine, Analytica Chimica Acta, 2000, 423, 221–228.
    [38] C. Liang, H. Peng, A. Zhou, L. Nie, S. Yao, Molecular imprinting polymer coated BAW bio-mimic sensor for direct determination of epinephrine, Analytica Chimica Acta, 2000, 415, 135–141.
    [39] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube, Atrazine sensing by molecularly imprinted membranes, Biosensors and Bioelectronics, 1995, 10, 959–964.
    [40] T. Panasyuk-Delaneya, V. M. Mirskya, M. Ulbricht, O. S. Wolfbeis, Impedometric herbicide chemosensors based on molecularly imprinted polymers, Analytica Chimica Acta, 2001, 435, 157–162.
    [41] R. S. Hutchins, L. G. Bachas, Nitrate emselective Elect rode Developed by electrochemically mediated imprinting/Doping of polypyrrole, Analytical Chemistry, 1995, 67, 1654–1660.
    [42] M. Lahav, A. B. Kharitonov, I. Willner, Imprinting of Chiral Molecular recognition sites in thin TiO2 films associated with field-effect transistors: novel functionalized devices for chiroselective and chirospecific analyses, Chemistry-A Eurpean Journal, 2001, 7, 3992–3997.
    [43] D. Kriz, K. Mosbach, Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer, Analytica Chimica Acta, 1995, 300, 71–75.
    [44] M. Lahav, E. Katz, I. Willner, Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on Au electrodes: effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir, 2001, 17 (23), 7387–7395.
    [45] M. C. Blanco-Lo´pez, M. J. Lobo-Castan˜o´n, A.J. Miranda-Ordieres, P. Tun˜o´n-Blanco, Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes, Biosensors and Bioelectronics, 2003, 18, 353–362.
    [46] A. Benkert, F. Scheller, W. Schssler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. Stcklein, A. Warsinke, Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range, Analytic Chemistry, 2000, 72, 916–921.
    [47] J.-C. Chena, A. S. Kumara, H.-H. Chunga, S.-H. Chien, M.-C. Kuo, J.-M. Zena, An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuators B, 2006, 115, 473–480.
    [48] M. Meyerhoff, GA. Rechnitz, An activated enzyme electrode for creatinine, Analytica Chimica Acta, 1976, 85, 277–285.
    [49] T. Tsuchida, K. Yoda, Multi-enzyme membrane electrodes for determination of creatinine and creatine in serum, Clinical Chemistry, 1983, 29, 51–55.
    [50] B. Tombach, J. Schneider, F. Matzkies, R. M. Schaefer, G. C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients, Clinica Chimica Acta, 2001, 312, 129–134.
    [51] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of instrumental analysis, Fifth Edition.
    [52] M. Onoda, S. Uchiyama, T. Santa, K. Imai, A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-
    2,1,3-benzoxadiazole, based on the method for predicting the fluorescence
    quantum yields, Analytical Chemistry, 2002, 74, 4089–4096.
    [53] S. Uchiyama, Y. Matsumura, A. Prasanna de Silva, K. Iwai, Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans, Analytical Chemistry, 2003, 75, 5926–5935.

    下載圖示 校內:立即公開
    校外:2009-07-27公開
    QR CODE