| 研究生: |
田健平 Tien, Chien-Pin |
|---|---|
| 論文名稱: |
膠態電解質與氧化石墨應用於電化學電容器
之研究 Gelled Electrolyte and Graphite Oxide to be Applied to Electrochemical Double Layer Capacitor |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 膠態電解質 、PEO-copolymer-PPO 、電雙層電容器 、氧化石墨 、graphene |
| 外文關鍵詞: | gelled electrolyte, PEO-copolymer-PPO, electric double layer capacitor, graphite oxide, graphene |
| 相關次數: | 點閱:169 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文對於膠態電解質組裝成為電雙層電容器的探討,大致上可以分為三個部份,分別為第一部份為膠態電解質應用於電雙層電容器(EDLC)最佳操作條件及離子傳遞機制的探討、第二部份使用低結晶石墨為原料,製作氧化石墨電極結合高分子做為膠態電解質電雙層電容器電極,目的為增加電解質離子利用石墨表面率及協助離子傳導至氧化石墨表面,以促進電容表現。最後為第三部份使用高結晶度石墨為原料,還原高分子結合氧化石墨電極,以降低電極電阻,使電極極化程度增加,促進電解質離子更易形成電雙層電容;另再比較高分子嵌入(intercalate)石墨層及嵌入後將石墨結晶打散後以此二材料為電極組裝膠態電解質電容器表現的差異。茲就以上三部份大綱分述如下:
1.第一部份
使用膠態電解質應用於EDLC中通常會遇到電解質與電極表面接觸機會少的缺點。膠態電解質使用以高分子poly(ethylene)- crosslinked-poly(propylene oxide)當作載體,以propylene carbonate (PC)為塑化劑,最後以LiClO4當作電解質鹽類,並組裝成電雙層電容器。高分子內容物中之diglycidyl ether –bisphenol-A與高分子前趨物混合可增進高分子P(EO-co-PO)本身的機械性並增加高分子內部之internal free volume。本論文測試之膠態電解質其離子導電性在25 ℃下有2×10-3 S cm-1。其不產生電化學反應之穩定電位窗範圍約有5 V,藉由二極式組裝GE-EDLC,分別使用膠態電解質及兩片活性碳纖維布(表面積為1100 m2 g-1),我們可以得到在放電電流密度為0.5 mA cm-2時其比電容為86 F g-1。可以比較在相同條件下使用有機液相電解質1 M LiClO4/PC其比電容為82 F g-1。比電容於GE-EDLC系統中隨放電電流密度的增加而減少的情況與有機液相電解質電雙層電容器(LE-EDLC) 比較,其比電容下降的情況較不明顯。我們藉由Nyquist plot分析可以知道離子在GE-EDLC系統其於電解質/電極界面的擴散阻力比較低,造成整體GE-EDLC整體總電阻較LE-EDLC為低。因此,高分子功能不僅可以幫助electrolyte bulk phase離子的移動而且可以使高分子與碳表面充分的接觸,高分子支鍊中的amorphous phase可以伸入電解質/碳電極之界面之邊界層(boundary layer),而其支鍊中之segmental mobility可以促進Li+的傳輸至電極內部。另使用constant phase element分析EDLC電容行為得到高分子鏈並不會影響碳電極表面電雙層電容的形成。
2.第二部份
單層graphene sheet表示碳材料具有高表面積可以提供分子或者是電解質離子於其表面進行物理或者化學的交互作用。本部份利用氧化石墨表面為電極材料去組裝電雙層電容器。通常氧化石墨是得到分離的graphene sheets之中間產物。我們將高分子poly(ethylene oxide)-based系與graphite oxide結合及再利用高分子前趨物poly(ethylene oxide) diamines去anchor graphene oxide sheets兩種方式去取代化學還原處理(hydrazine)。高分子/氧化石墨composite於GE-EDLC具有較高之電容130 F (g GO)-1。高分子結合graphene-based 系材料應用於儲能裝置提供一個方向。
3.第三部份
利用高分子poly(ethylene oxide)-based系intercalate入graphite oxide、高分子前趨物poly(propylene oxide) diamines與graphene oxide氧官能基進行anchor反應、增加graphene oxide disorder程度(破壞結晶狀態)及利用化學還原方式hydrazine hydrate處理,將過剩之氧官能基epoxy groups在graphene oxide恢復成sp2-carbon。此方法處理的目的在於增加電極的導電性,進而促進graphene oxide極化程度。如此可讓電解質離子更容易傳輸至graphene oxide電極的表面,更易形成電雙層電容,提高電容表現達125 F g-1,其操作之電位窗範圍為-3.0-3.0 V。
This dissertation can be qualitatively into three parts, influence for the specific capacitance performance of gelled electrolyte-electric double layer capacitor (GE-EDLC). The optimal condtions of gelled electrolyte operation in the electric double layer capacitor and the mechlisem of electrolytic ions transportation in the carbon fiber electrode were investigated in the first part. In the second part, we used low crystalline graphite as raw material to make polymer/graphite composition electrode in order to improve the employment the surface of exfoliated graphite and electrolytic ions transportation on surface of graphite oxide. We could enhance better performance of the specific capacitance in GE-EDLC. We replaced to use higher crystalline graphite and the same operation to obtain the polymer/graphite composition electrode. We utilized chemical reduction method to reduce the polymer/graphite composition electrode to lift its electric conductivity and also compared polymer intercalated graphene and polymer/graphene composite electrodes to be performed in the GE-EDLC as the third part.
1. The first part
Using a gel electrolyte for electric double layer capacitors usually encountered a drawback of poor contact between the electrolyte and the electrode surface. A gel electrolyte consisting of poly(ethylene oxide) crosslinked with poly(propylene oxide) as a host, propylene carbonate (PC) as a plasticizer, and LiClO4 as a electrolytic salt was synthesized for double layer capacitors. Diglycidyl ether of bisphenol-A was blended with the polymer precursors to enhance the mechanical properties and increase the internal free volume. This gel electrolyte showed an ionic conductivity as high as 210-3 S cm-1 at 25°C and was electrochemically stable over a wide potential range (ca. 5 V). By sandwiching this gel-electrolyte film with two activated carbon cloth electrodes (1100 m2g-1 in surface area), we obtained a capacitor with a specific capacitance of 86 F g-1 discharged at 0.5 mA cm-2, while the capacitance was 82 F g-1 for a capacitor equipped with a liquid electrolyte of 1 M LiClO4/PC. The capacitance decrease with the current density was less significant for the gel-electrolyte capacitor. We found that the less restricted ion diffusion near the electrolyte/electrode interface led to the smaller overall resistance of the gel-electrolyte capacitor. The high performance of the gel-electrolyte capacitor has demonstrated that the developed polymer network not only facilitated ion motion in the electrolyte bulk phase but also gave an intimate contact with the carbon surface. The side chains of the polymer in the amorphous phase could stretch across the boundary layer at the electrolyte/electrode interface to come into contact with the carbon surface, thus improving transport of Li+ ions by the segmental mobility in polymer. Constant phase element analysis of the capacitive behavior in micropores showed that the presence of polymer chains did not affect the surface characteristic for double layer formation. This developed gel electrolyte promoted the power performance of activated carbon electrodes by enhancing the transport of electrolyte ions inside and outside the micropores.
2. The second part
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction treatment, we intercalate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide shows in a “dry” gel-electrolyte system a double layer capacitance as high as 130 Fg-1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.
3 The third part
We intercalate graphite oxide with a poly(ethylene oxide)-based polymer, anchor the graphene oxide sheets with poly(propylene oxide) diamines, enhance the disorder degree of graphene oxide layers and reduce superfluous epoxy groups to form double bonds on graphite oxide with hydrazine hydrate. Purposes of these treatment are to enhance electron conductivity and polarization of graphene oxide surface. Its function is fully intimate with electrolye ions and let the specific capacitance of a electrical double layer capacitor perform up to the ultimate attainment for the graphene electrode therefore the chemical reduction of polymer/graphite oxide composite shows in a “dry” gel-electrolyte system a double layer capacitance as high as 125 F g-1 with high potential range between –3.0 and 3.0V.
參考文獻
[1] B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York, 1999.
[2] R. Kötz, M. Carlen, Electrochim. Acta 45 (2000) 2483.
[3] Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi, J. Power Sources 60 (1996) 219.
[4] L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources 80 (1999) 149.
[5] D. Qu, H. Shi, J. Power Sources 74 (1998) 99.
[6] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons, New York, 1988.
[7] I. Tanahashi, A. Yoshida, A. Nishino, J. Electrochem. Soc., 137 (1990) 3052.
[8] H. Shi, Electrochimica. Acta 41 (1996) 1633.
[9] A. Yoshida, S. Nonaka, I. Aoki, A. Nishino, J. Power Sources 60 (1996) 213.
[10] M. Ishikawa, A. Sakamoto, M. Morita, Y. Matsuda, K. Ishida, J. Power Sources 60 (1996) 233.
[11] M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, J. Electrochem. Soc. 148 (2001) A910.
[12] E. Frackowiak, F. Béguin, Carbon 39 (2001) 937.
[13] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765.
[14] Y.R. Nian, H.S. Teng, J. Electroanal. Chem. 540 (2003) 119.
[15] C.S. Li, D.Z. Wang, X.F. Wang, J. Liang, Carbon 43 (2005) 1557.
[16] K. Okajima, K. Ohta, M. Sudoh, Electrochim Acta 50 (2005) 2227.
[17] T. Morimoto, K. Hiratsuka, Y. Sanada, and K. Kurihara, J. Power Sources 60 (1996) 239.
[18] M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, J. Electrochem. Soc. 141 (1994) 1730.
[19] M.M. Armand, in: J.R. MacCallum, C.A. Vincent (Eds.), Polymer Electrolyte Reviews, vol.1, Elsevier, London, 1987, Ch. 1.
[20] M. Ishikawa, M. Ihara, M. Morita, Y. Matsuda, Electrochim. Acta 40 (1995) 2217.
[21] X. Liu, T. Osaka, J. Electrochem. Soc. 143 (1996) 3982.
[22] X. Liu, T. Osaka, J. Electrochem. Soc. 144 (1997) 3066.
[23] Y. Matsuda, K. Inoue, H. Takeuchi, Y. Okuhama, Solid State Ionics 113-115 (1998) 103.
[24] T. Osaka, X. Liu, M. Nojima, J. Power Sources 74 (1998) 122.
[25] T. Osaka, X. Liu, M. Nojima, T. Momma, J. Electrochem. Soc. 146 (1999) 1724.
[26] H.B. Gu, J.U. Kim, H.W. Song, G.C. Park, B.K. Park, Electrochim. Acta 45 (2000) 1533.
[27] R.J. Latham, S.E. Rowlands, W.S. Schlindwein, Solid State Ionics 147 (2002) 243.
[28] J.L. Qiao, N. Yoshimoto, M. Morita, J. Power Sources 105 (2002) 45.
[29] J.L. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita, Solid State Ionics 156 (2003) 415.
[30] M. Morita, J.L. Qiao, N. Yoshimoto, M. Ishikawa, Electrochim. Acta 50 (2004) 837.
[31] C.M. Yang, W.I. Cho, J.K. Lee, H.W. Rhee, B.W. Cho, Electrochem. Solid-State Lett. 8 (2005) A91.
[32] M. Morita, T. Kaigaishi, N. Yoshimoto, M. Egashira, T. Aida, Electrochem. Solid-State Lett. 9 (2006) A386.
[33] Y. Kang, K. Cheong, K.A. Noh, C. Lee, D.Y. Seung, J. Power Sources 119-121 (2003) 432.
[34] P.L. Kuo, W.J. Liang, T.Y. Chen, Polymer 44 (2003) 2957.
[35] W.J. Liang, T.Y. Chen, P.L. Kuo, J. Appl. Polymer Sci. 92 (2004) 1264.
[36] M. Ue, J. Electrochem. Soc., 141 (1994) 3336.
[37] D. Aurbach, I. Weissman, in: D. Aurbach (Ed.), Nonaqueous Electrochemistry, Marcel Dekker, New York, 1999, Ch. 1.
[38] H. Shobukawa, H. Tokuda, Md. A. B. H. Susan, M. Watanabe, Electrochim. Acta 50 (2005) 3872.
[39] R. de Levie, Electrochim. Acta 8 (1963) 751.
[40] L.G. Austin, G.E. Gagnon, J. Electrochem. Soc. 120 (1973) 251.
[41] C.T. Hsieh, H.S. Teng, Carbon 40 (2002) 667.
[42] Y.R. Nian, H.S. Teng, J. Electrochem. Soc. 149 (2002) A1008.
[43] K.P. Wang, H.S. Teng, Carbon 44 (2006) 3218.
[44] W.L. McCabe, J.C. Simith, P. Harriott, Unit Operations of Chemical Engineering, McGraw-Hill, New York, 1993, 5th ed., Ch. 3.
[45] Y. T. Kim, T. Mitani, J Power Sources 158 (2006) 1517.
[46] J. R. Miller, P. Simon, Science 321 (2008) 652.
[47] E. Frackowiak, F. Béguin, Carbon 39 (2001) 937.
[48] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, Science 313 (2006) 1760.
[49] C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, P. Simon, J. Am Chem. Soc. 130 (2008) 2730.
[50] J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, Y. Gogotsi, Angew. Chem. Int. Ed. 47 (2008) 3392.
[51] C. W. Huang, H. Teng, J. Electrochem. Soc. 155 (2008)
A739.
[52] D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, T. J. Bandosz, Adv. Funct. Mater. 19 (2009) 438.
[53] O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Carbon 43
(2005) 1303.
[54] H. Y. Liu, K. P. Wang, H. Teng, Carbon 43 (2005) 559.
[55] F. Stoeckli, T. A. Centeno, Carbon 45 (2005) 1184.
[56] T. A. Centeno, F. Stoeckli, J. Power Sources 154 (2006)
314.
[57] H. Teng, Y. J. Chang, C. T. Hsieh, Carbon 39 (2001) 1981.
[58] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, NanoLett.
8 (2008) 3498.
[59] Y. R. Lin, H. Teng, Carbon 41 (2003) 2865.
[60] C. Sivakumar, J. N. Nian, H. Teng, J. Power Sources 144
(2005) 295.
[61] C. P. Tien, W. J. Liang, P. L. Kuo, H. Teng, Electrochim.
Acta 53 (2008) 4505.
[62] C. P. Tien, H. Teng, J. Taiwan Inst. Chem. Engrs. 40 (2009)
452.
[63] M. Herrera-Alonso, A. A. Abdala, M. J. McAllister, I. A.
Aksay, R. K. Prud’homme, Langmuir 23 (2007) 10644.
[64] Y. Matsuo, K. Tahara, Y. Sugie, Carbon 35 (1997) 113.
[65] G. Wang, Z. Yang, X. Li, C. Li, Carbon 43 (2005) 2564.
[66] S. Stankovich, D. A. Dikin, G. H. B. Dommett, Kohlhaas, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 442 (2006) 282.
[67] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 45 (2007) 15581565.
[68] C. Gmez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7 (2007) 3499.
[69] D. W. Boukhvalov, M. I. Katsnelson, J. Am. Chem. Soc. 130 (2008) 10697.
[70] H. K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, Y. H. Lee, J. Am. Chem. Soc. 130 (2008) 1362.
[71] M. Toyoda, M. Inagaki, J. Phys. Chem. Solids 65 (2004) 109.
[72] W. S. Hummers, Jr, R. E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
[73] C. T. Hsieh, H. Teng, Carbon 40 (2002) 667.
[74] K.A. Trick, T.E. Saliba, Carbon 33 (1995) 1509.
[75] C. Hontoria-Lucas, A. J. López-Peinado, J. de D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon 33 (1995) 1585-1592.
[76] J.I. Paredes, S. Villar-Rodil, Martínez-Alonso, J. M. D. Tascón, Langmuir 24 (2008) 1056010564.
[77] T. Szabó, O. Berkesi, I. Dékány, Carbon 43 (2005) 3181.
[78] Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008.
[79] P. Z. Cheng, H. Teng, Carbon 41 (2003) 2057.
[80] K.P. Wang, H. Teng, J. Electrochem. Soc. 154 (2007) A993.
[81] J.N. Nian, H. Teng, J. Phys. Chem. B 109 (2005) 10279.
[82] C.W. Huang, C. M. Chuang, J. M. Ting, H. Teng, J. Power Sources 183 (2008) 406.
[83] S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44 (2006) 3342.
[84] S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R. S. Ruoff, J. Mater. Chem. 16 (2006) 155.
[85] S. Gilje, S. Han, M. Wang, K. L. Wang, R.B. Kaner, Nano Lett. 7 (2007) 3394.
[86] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3 (2008) 101.
[87] Bissessur R.; Liu P. K. Y.; White W.; Scully S. F. Langmuir (2009), 22, 1729.
[88] Lara N.; Ruiz-Hitzky E. J. Braz. Chem. Soc.,(1996), 7, 193.
[89] Herrera-Alonso, M.; Abdala, A. A.; McAllister, M. J.; Aksay, I. A.; Prud’homme, R. K. Langmuir (2007), 23, 10644.
[90] Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. (2008), 8, 3498.