| 研究生: |
游俊盟 Yu, Juin-Meng |
|---|---|
| 論文名稱: |
含冠醚基團電致發光和化學感測材料的設計、合成和應用 Electroluminescent and Chemosensory Materials Containing Crown Ether: Molecular Design, Synthesis and Application |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 聚芴 、冠醚 、電致發光 、化學感測器 、超分枝高分子 |
| 外文關鍵詞: | Polyfluorene, Crown Ether, PLED, Chemosensor, Hyperbranched Polymer |
| 相關次數: | 點閱:126 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來許多學者聚焦於電致發光高分子材料,因為其具有潛力應用於平面顯示器的發光材料。聚芴(Polyfluorene; PF)由於其具有良好化學和熱穩定性及良好的螢光量子效率(Quantum yield)因此為一泛用的藍光材料。此外,有許多聚芴衍生物已被成功合成且應用不只侷限於電致發光材料,亦可應用於化學感測器材料,對化學感測器有興趣是因為當其與analyte具有作用力時會產生一訊號,藉由此訊號判斷analyte的種類。在本研究,我們設計並合成新穎電致發光和化學感測器材料,因為冠醚具有與陽離子產生錯合物的特性,所以選擇使用冠醚做為辨識單元,結合冠醚和共軛高分子使得螢光和吸收光譜在不同離子存在下會有不同的變化,藉以判斷離子種類和濃度。
在第四、五章,我們成功合成出含冠醚聚芴高分子(PFC),並探討其對金屬陽離子的辨識能力,根據其螢光光譜,PFC對Ru3+和 Fe3+具有高度的選擇性,尤其對Ru3+具有良好的敏感性(偵測極限為1 ppm)。當使用PFC做為發光層應用於電致發光材料時,其對大亮度和電流效率(PFC:7910 cd/m2; 2.3 cd/A)皆較以PF為發光層還要高(860 cd/m2, 0.29 cd/A)。此外在電極(Ca)和發光層PF中插入PFC時,亦能有效改善PF元件效能(2800 cd/m2 and 0.53 cd/A)。
此外,我們嘗試著提升感測器的敏感性,所以合成一具有強拉電子基團(CN)以促進分子內電荷轉移(Intramolecular charge transfer; ICT),使用與發光團直接共軛的Monoaza-15-crown-5做為辨識單元體,我們合成兩個stilbene衍生物CN-azacrown. 和 H-azacrown.以探討強拉電子基團存在下對感測特性的影響,亦研究其對金屬陽離子的選擇性和敏感性的差異性(第六章)。CN-azacrown.對Li+離子的敏感性高於H-azacrown. 10倍,此結果顯示導入強拉電子基團(CN)能有效促進分子內電荷轉移並提升敏感性。
在最近的研究中,超分枝高分子較線性高分子具有良好的敏感性,因為超分枝高分子提供激子較多的跳躍路徑,激子可經由分枝點與analyte相遇,因此激子被萃息的機會相對增加,所以敏感性會較線性高分子好。而且,當應用超分枝高分子於電致發光材料時,超分枝高分子能有效抑制Excimer/Aggregation的生成並提升成膜性,以上特性皆有助於提升PLED元件效能。所以我們成功合成一新穎具三官能基單體(Trivinylfluorene monomer; M2),並利用Heck reaction成功合成出含冠醚超分枝高分子(HOFC),我們亦合成線性高分子(LOFC)做為對照組以探討主鏈結構對敏感性和PLED元件效能的差異(第七章)。HOFC的Ksv只有較LOFC高一點,此歸咎於芴的分枝點(4-position of fluorene)具有一扭角(41.6o),此扭角不利於激子的跳躍因而造成超分枝高分子其敏感性接近線性高分子。在PLED元件效能方面,超分枝高分子成膜性較線性高分子好,當製成PLED元件時,HOFC最大亮度和效率(4.1 V, 7132 cd/m2 and 1.3 cd/A)都較線性高分子好(6.2 V, 331 cd/m2, 0.22 cd/A)。
第八章,我們利用三官能基單體M2與具有雙溴的Triphenylamine反應,成功合成熱交聯性超分枝高分子(HTP和HTPOCH3),並應用做為電洞傳遞層(Hole-transporting layer; HTL)。經過熱處理後超分枝高分子對溶劑具有良好的阻抗性,以MEH-PPV做為發光層,利用HTP和HTPOCH3做為電洞傳遞層時其元件效率(HTP: 12610 cd/m2, 0.32 cd/A; HTPOCH3: 14060 cd/m2, 0.33 cd/A)較沒有電動傳遞層時好(9310 cd/m2, 0.26 cd/A)。
結合共軛鏈段與冠醚使之多功能性高分子可同時應用於化學感測器和電致發光材料,冠狀醚對特定金屬陽離子具有選擇性,共軛主鏈具有將訊號放大的功能,因而此感測器具有良好的敏感性和選擇性。然而導入冠醚後亦有助於電極和發光層之間的相容性而提升元件效能。為了提升感測器敏感性,導入強拉電子基團有助於促進分子內電荷轉移而提升敏感性,此設計概念未來可應用於設計共軛高分子化學感測器。另外,我們利用新穎單體M2成功合成一熱交聯型超分枝高分子應用於電洞傳遞層,可藉由利用其他電洞傳遞基團來取代Triphenylamine以調整其電洞傳遞特性。
.
Electroluminescent (EL) polymers have attracted considerable attention among scientists due to their potential applications as emitting layer in flat-panel displays. Polyfluorene (PFs) are widely applied in blue light-emitting material due to its high photoluminescence (PL), good chemical and thermal stability and high quantum yield. Moreover, various polyfluorene derivatives have been synthesized and applied not only in PLED but also in chemosensor. Interest in chemosensors is mainly attributed to their ability to produce signal gain in response to interactions with analytes. In this study, we attempted to design and synthesize novel electroluminescent and chemosensory materials. We choose crown ether as recognition moiety due to the natural characteristic of forming complex with cations. Combination of crown ether receptor with conjugated polymer backbone renders amplified fluorescence and absorption spectral variations in the presence of different metal ions.
In chapter 4 and 5, a copolyfluorene (PFC) containing pendant crown ether as receptor was synthesized to investigate its recognition ability to metal cations. The PL response of PFC demonstrated high selectivity toward Ru3+ and Fe3+ ions. The PFC shows high sensitivity for Ru3+ with detecting limit as low as 1 ppm. Unexpectedly, the PFC was an efficient emitter for electroluminescent device as well. Double-layer electroluminescent device using PFC as emitting layer revealed maximum luminance (7910 cd/m2) and maximum luminance efficiency (2.3 cd/A) superior to those of poly(9,9-dioctylfluorene) (PF) device (860 cd/m2, 0.29 cd/A). Moreover, inserting a PFC layer between the PF emitting layer and calcium cathode led to reduced turn-on voltage (4.1 V), much lower than 7.1 V and 6.6 V of the double-layer PFC and PF devices, and enhanced device performance (2800 cd/m2 and 0.53 cd/A).
To enhance sensitivity of the crown chemosensor, we synthesized a new chemosensory monoaza-15-crown-5 (CN-azacrown.) with electron-withdrawing cyano group to promote intramolecular charge transfer (ICT) process. To study the effect of electron-withdrawing group upon sensory characteristics of fluorescent chemosensors, a stilbene derivative H-azacrown. without electron-withdrawing group was also synthesized to compare its selectivity and sensitivity toward metal ions with CN-azacrown. (chapter 6). The sensitivity of CN-azacrown. toward Li+ is about one order higher than that of H-azacrown.. Clearly, e-withdrawing cyano group promotes ICT process in CN-azacrown. that leads to enhanced selectivity and sensitivity.
Hyperbranched conjugated polymers usually show better sensing efficiency than linear counterparts. This has been attributed to that hyperbranched conjugated polymers provide greater number of possible exciton migration pathways through branch units, which increase the probability of exciton quenched by analyte. Furthermore, hyperbranched structure suppresses undesirable excimer/aggregate formation and improves film morphology, in which are beneficial to enhance PLED device performance. We synthesized a new trivinylfluorene monomer (M2) as branched unit to obtain hyperbranched polymer (HOFC) via Heck reaction to discuss the effects of hyperbranched structure on sensory characteristics and EL device performance (chapter 7). The corresponding analogous linear polymer (LOFC) was also synthesized for comparsion. The Stern-Volmer coefficient (Ksv) of HOFC toward Ru3+ ion is higher than LOFC slightly, which might be attributed to reduced conjugation caused by the twist (41.6o) at 4-position of fluorene units. This twist is unfavorable to the migration of excitons through the branch unit. Accordingly, the sensing properties of HOFC and LOFC are comparable. Moreover, hyperbranched HOFC reveals homogeneous film morphology. Double-layer electroluminescent devices, using thermally cross-linked HFC or LFC as emitting layer, showed that the turn-on voltage, maximum luminance and maximum luminance efficiency of HFC device (4.1 V, 7132 cd/m2 and 1.3 cd/A) surpassed those of LFC device (6.2 V, 331 cd/m2, 0.22 cd/A).
Further, we used trivinylfluorene to react with dibromotriphenylamine to synthesize thermally cross-linkable hyperbranched polymer (HTP and HTPOCH3) serving as hole-transporting layer (HTL) in chapter 8. The resulted polymers demonstrated high solvent-resistance after thermal curing. The performance of MEH-PPV device (maximum luminance: 9310 cd/m2, luminance efficiency: 0.26 cd/A) was effectively enhanced by inserting the thermally cross-linked HTP or HTPOCH3 as HTL (HTP: 12610 cd/m2, 0.32 cd/A; HTPOCH3: 14060 cd/m2, 0.33 cd/A).
Combination of conjugated polyfluorene with crown ether gives rise to promising multi-functional polymers applicable in electroluminescent and chemosensory areas. The crown ether demostrats specifically recognizes metal ions with the conjugated backbone amplifying the signal produced by binding with the metal cations, leading to high sensitivity characteristics. The enhancement in PLED device performance can be attributed to polar characteristic of crown ether promote compatibility between emitting layer and cathode (Ca). To enhance sensitivity, we introduced electron-withdrawing group (CN) to facilitiate ICT process. This design concept can be applied to sketch new conjugated-based chemosensors. Furthermore, the novel branched monomer M2 was used to synthesize hole-transporting hyperbranched polymers. Their hole-transporting ability can be readily adjusted by replacing triphenylamine moiety with other hole-transporting groups.
1. Robert, A.; Albertus, P. H. J. S.; Meijer, E. W. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, (17), 4215-4233.
2. Gong, X.; Iyer, P. K.; Moses, D.; Bazan, G. C.; Heeger, A. J.; Xiao, S. S. Adv. Funct. Mater. 2003, 13, (4), 325-330.
3. Jungho, J.; Chunyan, C.; Sigurd, H.; Gerhard, W.; Do, Y. Y. Chem. Eur. J. 2004, 10, (11), 2681-2688.
4. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, (17), 2453-2455.
5. Liao, L. S.; Fung, M. K.; Lee, C. S.; Lee, S. T.; Inbasekaran, M.; Woo, E. P.; Wu, W. W. Appl. Phys. Lett. 2000, 76, (24), 3582-3584.
6. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, (11), 1565-1567.
7. Pei, Q.; Yang. J. Am. Chem. Soc. 1996, 118, (31), 7416-7417.
8. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, (11), 828-831.
9. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, (5), 946-953.
10. Liu, X.-M.; He, C.; Hao, X.-T.; Tan, L.-W.; Li, Y.; Ong, K. S. Macromolecules 2004, 37, (16), 5965-5970.
11. Liu, B.; Yu, W.-L.; Pei, J.; Liu, S.-Y.; Lai, Y.-H.; Huang, W. Macromolecules 2001, 34, (23), 7932-7940.
12. He, F.; Tang, Y.; Wang, S.; Li, Y.; Zhu, D. J. Am. Che. Soc. 2005, 127, (35), 12343-12346.
13. Peter, D.; Magnus, B.; Olle, I.; Mats, R. A.; Olof, W.; Thomas, H. Adv. Mater. 1995, 7, (1), 43-45.
14. Ohnishi, H. Annu. Rev. Mater. Res. 1989, 19, (1), 83-101.
15. Mario, L. J. Polym. Sci.Part A: Polym. Chem. 2001, 39, (17), 2867-2873.
16. Partridge, R. H. Polymer 1983, 24, (6), 733-738.
17. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, (12), 913-915.
18. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, (6293), 539-541.
19. Dini, D. Chem. Mater. 2005, 17, (8), 1933-1945.
20. Hamberg, I.; Granqvist, C. J. Appl. Phys. 1986, 60.
21. Kobayashi, H.; Ishida, T.; Nakato, Y.; Tsubomura, H. J. Appl. Phys. 1991, 69.
22. Tahar, R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. Appl. Phys. 1998, 83.
23. Osada, T.; Kugler, T.; Broms, P.; Salaneck, W. Synth. Met. 1998, 96.
24. Kim, J.; Granstrom, M.; Friend, R.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W. J. Appl. Phys. 1998, 84.
25. Milliron, D.; I.Hill; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87.
26. Lyon, L. Mol. Cryst. Liq. Cryst. 1989, 171.
27. Bradley, D. Synth. Met. 1993, 54.
28. Yang, Y.; Heeger, A. Appl. Phys. Lett. 1994, 64.
29. Michaelson, H., Handbook of Chemistry and Physics. 58th ed.; CRC Press: Boca Raton, FL 1977-1978.
30. Michaelson, H.; IBM. J. Res. Dev 1978, 22.
31. Fowler, R.; Nordheim, L. Proc. R. Soc. London A 1928, 119.
32. Parker, I. J. Appl. Phys. 1994, 75.
33. Rikken, G.; Braun, D.; Staring, E.; Demandt, R. Appl. Phys. Lett. 1994, 65.
34. Halls, J.; Cornil, J.; Santos, D. D.; Silbey, R.; Hwang, D.; Holmes, A.; Bredas, J.; Friend, R. Phys. Rev. B 1999, 60.
35. Gruner, J.; Remmers, M.; Neher, D. Adv. Mater. 1997, 9.
36. Soos, Z.; Galvao, D.; Etemad, S. Adv. Mater. 1994, 6.
37. Lemmer, U.; Heun, S.; Mahrt, R.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E.; Müllen, K.; Bässler, H. Chem. Phys. Lett. 1995, 240.
38. Romero, D.; Schaer, M.; Zuppiroli, L.; Cesar, B.; Francois, B. Appl. Phys. Lett. 1995, 67.
39. Scott, J.; Kaufman, J.; Brock, P.; Dipieto, R.; Salem, J.; Goitia, J. J. Appl. Phys. 1996, 79.
40. Adhikari, B.; Majumdar, S. Prog. Polym. Sci. 2004, 29, (7), 699-766.
41. Valeur, B.; Leray, I. Coor. Chem. Rev. 2000, 205, (1), 3-40.
42. Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, (1), 59-83.
43. Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, (5), 2723-2750.
44. Fabre, B.; Simonet, J. Coord. Chem. Rev. 1998, 178-180, (Part 2), 1211-1250.
45. Alexandratos, S. D.; Stine, C. L. React. Funct. Polym. 2004, 60, 3-16.
46. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, (1), 3-40.
47. Witulski, B.; Weber, M.; Bergstralsser, U.; Desvergne, J.-P.; Bassani, D. M.; Bouas-Laurent, H. Org. Lett. 2001, 3, (10), 1467-1470.
48. Mathevet, R.; Jonusauskas, G.; Rulliere, C.; Letard, J.-F.; Lapouyade, R. J. Phys. Chem. 1995, 99, (43), 15709-15713.
49. Loehr, H. G.; Voegtle, F. Acc. Chem. Res. 1985, 18, (3), 65-72.
50. McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, (7), 2537-2574.
51. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, (4), 1339-1386.
52. Feng, J.; Li, Y.; Yang, M. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 222.
53. Yu, J. M.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2985.
54. Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, (3), 183-275.
55. Hult, A.; Johansson, M.; Malmström, E. Adv. Polym. Sci. 1999, 143, 1-34.
56. Wen, G.-A.; Xin, Y.; Zhu, X.-R.; Zeng, W.-J.; Zhu, R.; Feng, J.-C.; Cao, Y.; Zhao, L.; Wang, L.-H.; Wei, W.; Peng, B.; Huang, W. Polymer 2007, 48, (7), 1824-1829.
57. Li, J.; Bo, Z. Macromolecules 2004, 37, (6), 2013-2015.
58. Xin, Y.; Wen, G.-A.; Zeng, W.-J.; Zhao, L.; Zhu, X.-R.; Fan, Q.-L.; Feng, J.-C.; Wang, L.-H.; Wei; Peng, B.; Cao, Y.; WeiHuang, W. Macromolecules 2005, 38, (16), 6755-6758.
59. Häussler, M.; Liu, J.; Zheng, R.; Lam, J. W. Y.; Qin, A.; Tang, B. Z. Macromolecules 2007, 40, (6), 1914-1925.
60. Lim, S.-J.; Seok, D. Y.; An, B.-K.; Jung, S. D.; Park, S. Y. Macromolecules 2005, 39, (1), 9-11.
61. Paul, G. K.; Mwaura, J.; Argun, A. A.; Taranekar, P.; Reynolds, J. R. Macromolecules 2006, 39, (23), 7789-7792.
62. Kocacic, P.; Kyriakis, A. J. Am. Chem. Soc. 1963, 85.
63. Mccullough, R. D. Adv. Mater. 1998, 10.
64. Scherf, U. Top. Curr. Chem. 1999, 201.
65. Hadziioannou, G.; Hutten, v. P. F., Semiconducting Polmers. Wiely: Germany, 2000; Vol. chapter 16.
66. Suzuki, A. Pure Appl. Chem. 1991, 63.
67. Chen, S.-H.; Chen, Y. Macromolecules 2005, 38.
68. Lögdlund, M.; Salaneck, W. R.; Meyers, F.; Brédas, J. L.; Arbuckle, G. A.; Friend, R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26.
69. Stille, J. K. Amgew. Chem. Int. Ed. 1986, 25.
70. Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. Oxford University: New York, 1996.
71. Laue, T.; Plagens, A., Named Organic Reactions. 2nd ed.; John Wiley& Sons: New York, 1999.
72. Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114.
73. Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci. 1966 A-1, (4).
74. Hsieh, B. R.; Yu, Y.; Lee, H. K.; Vanlaeken, A. C. Macromolecules 1997, 30.
75. Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, (7), 477-487.
76. Yamamoto, T.; Morita, A.; Muyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25.
77. Klaerner, G.; Miller, R. D. Macromolecules 1998, 31.
78. Kreyenschimdt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31.
79. Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J.; Chandross, E. A. Science 1995, 117.
80. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. In Saunders Golden Sunburst Series, 5th ed.; 1998; Vol. chapter 15.
81. Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76.
82. Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59.
83. Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95.
84. Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79.
85. May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH: 2003.
86. Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals. Clarendon Press: Oxford, 1982.
87. Knox, R. S. J. Phys. Chem. 1994, 98.
88. Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hymene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99.
89. Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys 1981, 30.
90. Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54.
91. Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35.
92. Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, L. Macromolecules 2002, 35.
93. Kafafi, Z. H., Organic Electroluminescence. US Naval Research Lab: Washington, DC, USA, 2005.
94. May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd ed.; Wiley-VCH: 2003; Vol. chapter 8.
95. Chen, S.-H., The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation: National Cheng Kung University, 2006.
96. Closs, G. L.; Johnson, M. D.; Miller, J. R.; Piotrowiak, P. J. Am. Chem. Soc. 1989, 111, 3751-3753.
97. Reichardt, C., Solvent and Solvent Effect in Organic Cehmistry. Verlag Chemie: New York, 1988.
98. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Publisher: New York, 1999; p Chapter 7.
99. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Publisher: New York, 1999; p Chapter 8.
100. Bourson, J.; Valeur, B. J. Phys. Chem. 1989, 93, (9), 3871-3876.
101. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65, (9), 3610-3616.
102. Gosser, D. K., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism. 1st ed.; VCH: New York, 1993.
103. Bernius, M. T.; Inbasekaran, M.; Brien, J. O.; Wu, W. Adv. Mater. 2000, 12, (23), 1737-1750.
104. Kraft, A.; Grimsdale, A. C.; Holms, A. B. Angew. Chem. Int. Ed. 1998, 37, (4), 402-428.
105. Wu, C.-W; Sung H.-H.; Lin, H.-C. J Polym. Sci. Part A: Polym. Chem. 2006, 44, (23), 6765-6774.
106. Lee, H.-M.; Choi, K.-H.; Hwang, D.-H.; Do, L.-M.; Zyung, T.; Lee, J.-W.; Park, J.-K. Appl. Phys. Lett. 1998, 72, (19), 2382-2384.
107. Li, F.; Tang, H.; Anderegg, J.; Shinar, J. Appl. Phys. Lett. 1997, 70, (10), 1233-1235.
108. Xiaohui, Y.; Yueqi, M.; Wei, Y.; Gang, Y.; Yong, C. Appl. Phys. Lett. 2001, 79, (5), 563-565.
109. Hoven, C.; Yang, R.; Garcia, A.; Heeger, A. J.; Nguyen, T.-Q.; Bazan, G. C. J. Am. Chem. Soc. 2007, 129, (36), 10976-10977.
110. Yang, R.; Wu, H.; Cao, Y.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, (45), 14422-14423.
111. Yong, C.; Gang, Y.; Alan, J. H. Adv. Mater. 1998, 10, (12), 917-920.
112. Nuyken, O.; Jungermann, S.; Wiederhirn, V.; Bacher, E.; Meerholz, K. Monatsh. Chem. 2006, 137, (7), 811-824.
113. Yulong, S.; Ahmad, R. H.; Man Hoi, W.; George, G. M. Chem. Phys. Chem. 2004, 5, (1), 16-25.
114. Hisao, I.; Kiyoshi, S.; Eisuke, I.; Kazuhiko, S. Adv. Mater. 1999, 11, (8), 605-625.
115. Huang, F.; Wu, H.; Wang, D.; Yang, W.; Cao, Y. Chem. Mater. 2004, 16, (4), 708-716.
116. Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, (4), 1099-1103.
117. Dieter, N. Macromol. Rapid Commun. 2001, 22, (17), 1365-1385.
118. Hsieh, B.-Y.; Chen, Y. Macromolecules 2007, 40, (25), 8913-8923.
119. Tsai, L.-R.; Chen, Y. Macromolecules 2007, 40, (9), 2984-2992.
120. Tsai, L.-R.; Chen, Y. J Polym. Sci. Part A: Polym. Chem. 2007, 45, (23), 5541-5551.
121. Zhou, G.; Qian, G.; Ma, L.; Cheng, Y.; Xie, Z.; Wang, L.; Jing, X.; Wang, F. Macromolecules 2005, 38, (13), 5416-5424.
122. Gunnlaugsson, T.; Bichell, B.; Nolan, C. Tetrahedron 2004, 60, (27), 5799-5806.
123. Huang, J.-H.; Wen; Sun, Y.-Y.; Chou, P.-T.; Fang, J.-M. J.Org. Chem. 2005, 70, (15), 5827-5832.
124. Fang, J.-M.; Selvi, S.; Liao, J.-H.; Slanina, Z.; Chen, C.-T.; Chou, P.-T. J. Am. Chem. Soc. 2004, 126, (11), 3559-3566.
125. Han, T.; Chen, C.-F. Org. Lett. 2006, 8, (6), 1069-1072.
126. Swager, T. M. Acc. Chem. Res. 1998, 31, (5), 201-207.
127. Wang, B.; Wasielewski, M. R. J. Am. Chem. Soc. 1997, 119, (1), 12-21.
128. Chang, C.-P.; Chao, C.-Y.; Huang, J. H.; Li, A.-K.; Hsu, C.-S.; Lin, M.-S.; Hsieh, B. R.; Su, A.-C. Synth. Met. 2004, 144, (3), 297-301.
129. Zhang, Y.; Murphy, C. B.; Jones, W. E. Macromolecules 2001, 35, (3), 630-636.
130. Cabarcos, E. L.; Carter, S. A. Macromolecules 2005, 38, (10), 4409-4415.
131. Cabarcos, E. L.; Carter, S. A. Macromolecules 2005, 38, (25), 10537-10541.
132. Liu, Y.; Liu, M. S.; Jen, A. K. Y. Acta. Polym. 1999, 50, (2-3), 105-108.
133. Giri, R. Spectrochim. Acta. A 2004, 60, (4), 757-763.
134. Thipperudrappa, J.; Biradar, D. S.; Hanagodimath, S. M. J. Lumin. 2007, 124, (1), 45-50.
135. Suresh Kumar, H. M.; Kunabenchi, R. S.; Biradar, J. S.; Math, N. N.; Kadadevarmath, J. S.; Inamdar, S. R. J. Lumin. 116, (1-2), 35-42.
136. Zhou, X.-H.; Yan, J.-C.; Pei, J. Macromolecules 2004, 37, (19), 7078-7080.
137. Satrijo, A.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, (51), 16020-16028.
138. Jinsang, K.; McQuade, D. y.; Sean, M.; Timothy, S. Angew. Chem. Int. Ed. 2000, 39, (21), 3868-3872.
139. Egbert, Z.; Alexander, P.; Emmanuelle, H.; David, B.; Jean-Luc, B.; Patricia Scandiucci de, F.; Ullrich, S.; Emil, J. W. L. J. Chem. Phys. 2002, 117, (14), 6794-6802.
140. Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klarner, G.; Miller, R. D.; Miller, D. C. Macromolecules 1998, 32, (2), 361-369.
141. List, E. J. W.; Guentner, R.; Freitas, P. S. d.; Scherf, U. Adv. Mater. 2002, 14, (5), 374-378.
142. Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, (18), 6907-6914.
143. Liming, D.; Zhishan, B.; Qinghui, C.; Jing, L.; Liming, D.; Yi, P.; Frank, E. K.; Michael, F. D. Macromol. Chem. Phys. 2006, 207, (10), 870-878.
144. Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Adv. Mater. 2007, 19, (18), 2574-2579.
145. Wu, H.; Huang, F.; Mo, Y.; Yang, W.; Wang, D.; Peng, J.; Cao, Y. Adv. Mater. 2004, 16, (20), 1826-1830.
146. Wu, H.; Huang, F.; Peng, J.; Cao, Y. Org. Electron. 2005, 6, (3), 118-128.
147. Liu, T.; Ramesh, A.; Ma, Z.; Ward, S. K.; Zhang, L.; George, G. N.; Talaat, A. M.; Sacchettini, J. C.; Giedroc, D. P. Nat. Chem. Biol. 2007, 3, (1), 60-68.
148. Jiang, Z.; Tang, L.; Shao, F.; Zheng, G.; Lu, P. Sens. Actuators B 2008, 134, (2), 414-418.
149. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Revi. 2007, 107, (4), 1339-1386.
150. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, (5), 1515-1566.
151. Fages, F.; Desvergne, J. P.; Bouas-Laurent, H. J. Am. Chem. Soc. 1989, 111, (1), 96-102.
152. Huston, M. E.; Haider, K. W.; Czarnik, A. W. J. Am. Chem. Soc. 1988, 110, (13), 4460-4462.
153. Pedersen, C. J. J. Ind. Chem. 6 1988, 6, (4), 337-350.
154. Chang, K.-C.; Su, I.-H.; Senthilvelan, A.; Chung, W.-S. Org. Lett. 2007, 9, (17), 3363-3366.
155. Bu, J.-H.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2004, 6, (19), 3301-3303.
156. Xia, W.-S.; Schmehl, R. H.; Li, C.-J. J. Am. Chem. Soc. 1999, 121, (23), 5599-5600.
157. Licchelli, M.; Orbelli Biroli, A.; Poggi, A. Org. Lett. 2006, 8, (5), 915-918.
158. Dumon, P.; Jonusauskas, G.; Dupuy, F.; Pee, P.; Rulliere, C.; Letard, J. F.; Lapouyade, R. J. Phys. Chem. 1994, 98, (41), 10391-10396.
159. Pines, D.; Pines, E.; Rettig, W. J. Phys. Chem. A 2002, 107, (2), 236-242.
160. Martin, M. M.; Plaza, P.; Meyer, Y. H.; Badaoui, F.; Bourson, J.; Lefevre, J.-P.; Valeur, B. J. Phys. Chem. 1996, 100, (17), 6879-6888.
161. Yang, J.-S.; Lin, Y.-D.; Chang, Y.-H.; Wang, S.-S. J. Org. Chem. 2005, 70, (15), 6066-6073.
162. Liu, Y.; Han, M.; Zhang, H.-Y.; Yang, L.-X.; Jiang, W. Org. Lett. 2008, 10, (13), 2873-2876.
163. Tarazi, L.; Choi, H.; Christian Mason, J.; Sowell, J.; Strekowski, L.; Patonay, G. Microchemical Journal 2002, 72, (1), 55-62.
164. Luigi Fabbrizzi, M. L., Piersandro Pallavicini, Angelo Perotti, Donatella Sacchi. Angew. Chem. Int.Ed. Engl. 1994, 33, (19), 1975-1977.
165. Singh, N.; Kaur, N.; Dunn, J.; MacKay, M.; Callan, J. F. Tetrahedron Lett. 2009, 50, (8), 953-956.
166. Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, (36), 8551-8588.
167. Wu, T.-Y.; Sheu, R.-B.; Chen, Y. Macromolecules 2004, 37, (3), 725-733.
168. Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875.
169. Satrijo, A.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 16020.
170. Pu, K. Y.; Pan, S. Y. H.; Liu, B. J. Phys. Chem. B 2008, 112, 9295.
171. Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Nguyen, L. H.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E. Macromolecules 2007, 40, 65.
172. Liu, C. L.; Tsai, J. H.; Lee, W. Y.; Chen, W. C.; Jenekhe, S. A. Macromolecules 2008, 41, 6952.
173. Horowitz, G. Adv. Mater. 1998, 10, 365.
174. Baek, N. S.; Hau, S. K.; Yip, H. L.; Acton, O.; Chen, K. S.; Jen, A. K. Y. Chem. Mater. 2008, 20, 5734.
175. Kreyenschmidt, M.; Kla?rner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scoot, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
176. Neher, D. Macromol. Rapid Commun. 2001, 22, 1365.
177. Chen, S. A.; Lu, H. H.; Huang, C. W. Adv. Polym. Sci. 2008, 212, 49.
178. Zojer, E.; Pogantsch, A.; Hennebicq, E.; Beljonne, D.; Bre?das, J. L.; Scandiucci de Freitas, P.; Scherf, U.; List, E. J. W. J. Chem. Phys. 2002, 117, 6794.
179. Lu, H. H.; Liu, C. Y.; Jen, T. H.; Liao, J. L.; Tseng, H. E.; Huang, C. W.; Huang, M. C.; Chen, S. A. Macromolecules 2005, 38, 10829.
180. Liu, L.; Lu, P.; Xie, Z.; Wang, H.; Tang, S.; Wang, Z.; Zhang, W.; Ma, Y. J. Phys. Chem. B 2007, 111, 10639.
181. Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Mu?ller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D. Adv. Mater. 2001, 13, 565.
182. Su, H.; Wu, F. I.; Shu, C. F.; Tung, Y. L.; Chi, Y.; Lee, G. H. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 859.
183. Takagi, K.; Kunii, S.; Yuki, Y. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2119.
184. Wu, C. W.; Lin, H. C. Macromolecules 2006, 39, 7232.
185. Chen, S.-A.; Lu, H.-H.; Huang, C.-W. Adv. Polym. Sci. 2008, 49-84.
186. Tsai, L. R.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 70.
187. Chen, S. H.; Shiau, C. S.; Tsai, L. R.; Chen, Y. Polymer 2006, 47, 8436.
188. Tsai, L. R.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4465.
189. Tsai, L. R.; Chen, Y. Macromolecules 2007, 40, 2984.
190. Wang, R.; Wang, W. Z.; Yang, G. Z.; Liu, T.; Yu, J.; Jiang, Y. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 790.
191. Wang, P. W.; Liu, Y. J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. Commun. 1996, 8, 237.
192. Peng, Q.; Yan, L.; Chen, D.; Wang, F.; Wang, P.; Zou, D. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5296.
193. Wang, H.; Sun, Y.; Qi, Z.; Kong, F.; Ha, Y.; Yin, S.; Lin, S. Macromolecules 2008, 41, 3537.
194. Wen, G. A.; Xin, Y.; Zhu, X. R.; Zeng, W. J.; Zhu, R.; Feng, J. C.; Cao, Y.; Zhao, L.; Wang, L. H.; Wei, W.; Peng, B.; Huang, W. Polymer 2007, 48, 1824.
195. Lim, S. J.; Seok, D. Y.; An, B. K.; Jung, S. D.; Park, S. Y. Macromolecules 2006, 39, 9.
196. Klärner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D. Chem. Mater. 1999, 11, 1800.
197. Sun, H.; Liu, Z.; Hu, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2124.
198. McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537.
199. de Silva, A. P.; Gunaraten, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
200. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
201. Tsai, L. R.; Chen, Y. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5541.
202. Lin, Q.; Liu, W.; Yao, B.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. Macromolecules 2007, 40, 1851.
203. Giri, R. Spectrochim. Acta, Part A 2004, 60, 757.
204. Thipperudrappa, J.; Biradar, D. S.; Hanagodimath, S. M. J. Lumin. 2007, 124, 45.
205. Suresh Kumar, H. M.; Kunabenchi, R. S.; Biradar, J. S.; Math, N. N.; Kadadevarmath, J. S.; Inamdar, S. R. J. Lumin. 2006, 116, 35.
206. Tolosa, J.; Kub, C.; Bunz, U. H. F. Angew. Chem., Int. Ed. 2009, 48, 4610.
207. Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695.
208. Tsai, L. R.; Chen, Y. Macromolecules 2008, 41, 5098.
209. Lo, S.-C.; Burn, P. L. Chem. Rev. 2007, 107, (4), 1097-1116.
210. He, Q.-Y.; Lai, W.-Y.; Ma, Z.; Chen, D.-Y.; Huang, W. Eur. Polym. J. 2008, 44, (10), 3169-3176.
211. Tsai, L. R.; Chen, Y. Macromolecules 2007, 40, (9), 2984-2992.
212. Tsai, L. R.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, (19), 4465-4476.
213. Tsai, L. R.; Lee, C.-W.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, (17), 5945-5958.
214. Wu, C.-W.; Lin, H.-C. Macromolecules 2006, 39, (21), 7232-7240.
215. Häussler, M.; Liu, J.; Zheng, R.; Lam, J. W. Y.; Qin, A.; Tang, B. Z. Macromolecules 2007, 40, (6), 1914-1925.
216. Qingguo, H.; Hongmin, H.; Fenglian, B.; Yong, C. Macromol. Rapid Commun. 2006, 27, (4), 302-305.
217. Voit, B. I.; Lederer, A. Chem. Rev. 2009, 109, (11), 5924-5973.
218. Wang, P.-W.; Liu, Y.-J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 8, (3), 237-241.
219. Qiang, P.; Liushui, Y.; Dezhi, C.; Fuzhi, W.; Ping, W.; Dechun, Z. J. Polym.Sci. Part A: Polym. Chem. 2007, 45, (22), 5296-5307.
220. Wang, H.; Sun, Y.; Qi, Z.; Kong, F.; Ha, Y.; Yin, S.; Lin, S. Macromolecules 2008, 41, (10), 3537-3542.
221. Klarner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D. Chem. Mater. 1999, 11, (7), 1800-1805.
222. Honghao, S.; Ze, L.; Yufeng, H.; Lixiang, W.; Dongge, M.; Xiabing, J.; Fosong, W. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, (9), 2124-2129.
223. Akcelrud, L. Prog. Polym. Sci. 2003, 28, (6), 875-962.
224. Hsiao, C.-C.; Hsiao, A.-E.; Chen, S.-A. Adv. Mater. 2008, 20, (10), 1982-1988.
225. Huang, F.; Cheng, Y.-J.; Zhang, Y.; Liu, M. S.; Jen, A. K. Y. J. Mater. Chem. 2008, 18, (38), 4495-4509.
226. Lin, C.-Y.; Chen, Y.-M.; Chen, H.-F.; Fang, F.-C.; Lin, Y.-C.; Hung, W.-Y.; Wong, K.-T.; Kwong, R. C.; Xia, S. C. Organ. Electron. 2009, 10, (1), 181-188.
227. Park, J. H.; Yun, C.; Park, M. H.; Do, Y.; Yoo, S.; Lee, M. H. Macromolecules 2009, 42, (18), 6840-6843.
228. Lim, B.; Hwang, J.-T.; Kim, J. Y.; Ghim, J.; Vak, D.; Noh, Y.-Y.; Lee, S.-H.; Lee, K.; Heeger, A. J.; Kim, D.-Y. Org. Lett. 2006, 8, (21), 4703-4706.
229. Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K. Y. Macromolecules 2008, 41, (24), 9570-9580.
230. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, (4), 953-1010.
231. Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Tian, Y.; Jen, A. K. Y. Chem. Mater. 2007, 20, (2), 413-422.
232. Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2000, 33, (10), 3514-3517.
233. Yan, S.; Xiong, G.; Alan, J. H.; Michelle, L.; Alex, K. Y. J. Adv. Mater. 2009, 21, (19), 1972-1975.
234. Jiang, X. Z.; Liu, S.; Liu, M. S.; Herguth, P.; Jen, A. K. Y.; Fong, H.; Sarikaya, M. Adv. Funct.l Mater. 2002, 12, (11-12), 745-751.
235. Yu, J.-M.; Chen, Y. Macromolecules 2009, 42, (21), 8052-8061.
236. Tsai, L. R.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, (23), 5541-5551.
237. Tsai, L. R.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, (1), 70-84.
238. Tsai, L.-R.; Chen, Y. Macromolecules 2008, 41, (14), 5098-5106.
239. Zhan'ao, T.; Rupei, T.; Fu, X.; Yongfang, L. Polym. Adv. Technol. 2007, 18, (12), 963-970.
240. Radke, W.; Litvinenko, G.; Muller, A. H. E. Macromolecules 1998, 31, (2), 239-248.
241. Robinson, M. R.; Wang, S.; Bazan, G. C.; Cao, Y. Adv. Mater. 2000, 12, (22), 1701-1704.
242. Niu, Y. H.; Liu, M.; Ka, J. W.; Bardeker, J.; Zin, M.; Schofield, R.; Chi, Y.; Jen, A. Y. Adv. Mater. 2007, 19, (2), 300-304.