簡易檢索 / 詳目顯示

研究生: 廖顓盛
Liao, Chaun-Sheng
論文名稱: 聚(三嗪醯亞胺)中晶體缺陷與選擇性離子傳導之關聯性
The nexus of crystal defects and selective ion conduction in poly(triazine imide)
指導教授: 劉詠熙
Lau, Vincent Wing-hei
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 108
中文關鍵詞: 聚(三嗪醯亞胺)氰醯胺基離子選擇性傳輸
外文關鍵詞: Poly(triazine imide), Cyanamide group, Ion selective transport
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子選擇性在電化學、淨水、生物傳感器等多種科學與工業應用中扮演著至關重要的角色。雖然離子交換膜(IEMs)與離子選擇性電極(ISEs)等材料已被廣泛研究,但尋找具更佳離子選擇性的創新材料仍然是重要的研究方向。本研究探討了聚(三嗪醯亞胺)(Poly(triazine imide), PTI),此種碳氮化合物材料因具有高度有序的亞奈米孔洞結構與二維通道,使其在離子傳輸應用中展現出良好的潛力。
    本研究透過控制合成過程中所引入的氰醯胺基(NCN)含量,探討具有不同缺陷程度PTI的離子選擇性。透過系統性調整合成參數(如前驅物與鹽類比例、加熱時間及多步驟合成方法),成功合成出不同缺陷程度的 PTI,並使用X 射線繞射(XRD)與傅立葉變換紅外光譜(FTIR)對 PTI 的結晶度與官能基組成進行表徵分析。
    為了測試 PTI 的離子選擇性,本研究進行了擴散與傳導實驗,測試其對 Li⁺、Na⁺、K⁺、Mg²⁺ 和 Ca²⁺ 在水溶液中的選擇性傳輸行為。結果表明,PTI 具有選擇性的離子傳導能力。然而,儘管 PTI 具有不同的氰醯胺基(NCN)含量,其選擇性與導電性並無顯著差異。這表明 PTI 的離子選擇性主要來自於其本身結構,而非 NCN 缺陷。
    本研究提供了 PTI 結構特性與離子選擇性之間的關聯性,並突顯其作為先進離子分離與能量應用材料的潛力。未來的研究將進一步探索 PTI 在薄膜分離技術與能量儲存系統中的應用。

    Ion selectivity plays a crucial role in various scientific and industrial applications, including electrochemistry, water purification, and biosensing. While materials such as ion exchange membranes (IEMs) and ion-selective electrodes (ISEs) have been extensively studied, the search for novel materials with enhanced ion selectivity continues. This study investigates poly(triazine imide) (PTI), a member of the carbon nitride family, as a potential material for selective ion conduction. PTI's highly ordered sub-nanoporous structure and confined two-dimensional channels present promising characteristics for ion transport applications.
    The research investigates the synthesis of poly(triazine imide) (PTI) with varying defect levels by controlling the amount of cyanamide (NCN) groups introduced during its fabrication. A systematic study was conducted to optimize synthesis parameters, including precursor-to-salt ratios, heating durations, and multi-step synthesis approaches, to achieve PTI structures with different defect concentrations. The structural characteristics of PTI were analyzed using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) to evaluate the crystalline structure, functional group composition, and defect distribution.
    To evaluate PTI's ion selectivity, diffusion and conduction experiments were conducted for Li⁺, Na⁺, K⁺, Mg²⁺, and Ca²⁺ in aqueous solutions. The results indicate that PTI exhibits selective ion transport behavior, which is influenced by defect concentration and dielectric properties. PTI with a higher cyanamide content demonstrated altered selectivity, suggesting that structural defects play a crucial role in modulating ion transport characteristics.
    This study offers insights into the correlation between the structural properties of PTI and its ion selectivity, emphasizing its potential as an alternative material for advanced ion separation and energy applications. Future research will further investigate PTI's applicability in membrane-based separation technologies and energy storage systems.

    摘要 I Abstract II 致謝 III Contents IV Table Contents VII Figure Contents VIII Chapter 1 Introduction 1 1.1 Importance of ion selectivity 1 1.2 Literature review 4 1.2.1 Ion selectivity membrane in aqueous solution 4 1.2.2 The typical membrane for ion selectivity 6 1.2.3 The selectivity in PTI synthesis 8 1.2.4 The mechanism and defects in PTI synthesis 10 1.3 Methodology 15 1.3.1 Synthesis of PTI with different cyanamide groups 15 1.3.2 Fabrication of PTI membrane 16 1.3.3 The investigation for PTI selectivity and transportation 16 Chapter 2 Experiment 18 2.1 Manufacturer and Purity of Chemicals 18 2.2 Instrument details 19 2.3 Experimental details 21 2.3.1 PTI synthesis method 21 2.3.2 PTI membrane fabrication 26 2.3.3 Diffusion experiment 28 2.3.4 Conductance experiment 29 2.3.5 PTI digestion 29 Chapter 3 Result 30 3.1 Different ratio of cyanamide group in Poly(triazine imide) 30 3.1.1 The introduction of different salt into eutectic system for PTI synthesis 33 3.1.2 LiSCN in LiCl/KCl 34 3.1.3 KOCN in LiCl/KCl 39 3.2 Optimization of PTI 42 3.2.1 Melamine to eutectic salt ratio 42 3.2.2 Duration of heating time 43 3.2.3 Dividing the duration of heating time 45 3.2.4 Three sets of PTI with different amounts of NCN group 49 3.3 Characteristics of three sets of PTI with different amounts of NCN group 52 3.3.1 XPS 52 3.3.2 Elemental analysis 55 3.3.3 Surface Area 58 3.3.4 SEM 60 3.4 Optimization of PTI membrane 62 3.4.1 PTFE to PTI wt% 63 3.4.2 Different solvent 64 3.4.3 Comparison of two membrane making methods 65 3.4.4 Loading amount on carbon paper 67 3.5 Ion conductance of PTI with different NCN groups 69 3.6 Ion selectivity of PTI with different cyanamide group ratio 71 3.7 Discussion on ion conductance and diffusion for PTI membrane with different cyanamide groups 75 Chapter 4 Conclusion 78 Chapter 5 Reference 80 Chapter 6 Appendix 84

    (1) Luo, T.; Abdu, S.; Wessling, M. Selectivity of Ion Exchange Membranes: A Review. Journal of Membrane Science 2018, 555, 429-454.
    (2) Stenina, I.; Golubenko, D.; Nikonenko, V.; Yaroslavtsev, A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. International Journal of Molecular Sciences 2020, 21 (15), 5517.
    (3) Thakur, A. K.; Malmali, M. Advances in Polymeric Cation Exchange Membranes for Electrodialysis: An Overview. Journal of Environmental Chemical Engineering 2022, 10 (5), 108295.
    (4) Yee, R. S.-L.; Rozendal, R. A.; Zhang, K.; Ladewig, B. P. Cost Effective Cation Exchange Membranes: A Review. Chemical Engineering Research and Design 2012, 90 (7), 950-959.
    (5) Shao, Y.; Ying, Y.; Ping, J. Recent Advances in Solid-Contact Ion-Selective Electrodes: Functional Materials, Transduction Mechanisms, and Development Trends. Chemical Society Reviews 2020, 49 (13), 4405-4465.
    (6) Kreuer, K.-D.; Münchinger, A. Fast and Selective Ionic Transport: From Ion-Conducting Channels to Ion Exchange Membranes for Flow Batteries. Annual Review of Materials Research 2021, 51 (1), 21-46.
    (7) Jackson, D. T.; Nelson, P. N. Preparation and Properties of Some Ion Selective Membranes: A Review. Journal of Molecular Structure 2019, 1182, 241-259.
    (8) Tran, T. N. T.; Qiu, S.; Chung, H.-J. Potassium Ion Selective Electrode Using Polyaniline and Matrix-Supported Ion-Selective Pvc Membrane. IEEE Sensors Journal 2018, 18 (22), 9081-9087.
    (9) Armstrong, R. Mechanistic Aspects of the K+ Ion Selective Electrode Based on Valinomycin-Pvc. Electrochimica Acta 1987, 32 (11), 1549-1552.
    (10) Hauser, P. C.; Chiang, D. W.; Wright, G. A. A Potassium-Ion Selective Electrode with Valinomycin Based Poly (Vinyl Chloride) Membrane and a Poly (Vinyl Ferrocene) Solid Contact. Analytica Chimica Acta 1995, 302 (2-3), 241-248.
    (11) Varma, S.; Sabo, D.; Rempe, S. B. K+/Na+ Selectivity in K Channels and Valinomycin: Over-Coordination Versus Cavity-Size Constraints. Journal of Molecular Biology 2008, 376 (1), 13-22.
    (12) Xian, W.; Wu, D.; Lai, Z.; Wang, S.; Sun, Q. Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications. Accounts of Chemical Research 2024, 57 (14), 1973-1984.
    (13) Liu, K.; Epsztein, R.; Lin, S.; Qu, J.; Sun, M. Ion–Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS nano 2024, 18 (33), 21633-21650.
    (14) Lu, D.; Yao, Z.; Jiao, L.; Waheed, M.; Sun, Z.; Zhang, L. Separation Mechanism, Selectivity Enhancement Strategies and Advanced Materials for Mono-/Multivalent Ion-Selective Nanofiltration Membrane. Advanced Membranes 2022, 2, 100032.
    (15) Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. Ultrafast Selective Transport of Alkali Metal Ions in Metal Organic Frameworks with Subnanometer Pores. Science advances 2018, 4 (2), eaaq0066.
    (16) Escobar-Hernandez, H. U.; Shen, R.; Papadaki, M. I.; Powell, J. A.; Zhou, H.-C.; Wang, Q. Hazard Evaluation of Metal–Organic Framework Synthesis and Scale-Up: A Laboratory Safety Perspective. ACS Chemical Health & Safety 2021, 28 (5), 358-368.
    (17) Zhao, Y.; Wu, M.; Guo, Y.; Mamrol, N.; Yang, X.; Gao, C.; Van der Bruggen, B. Metal-Organic Framework Based Membranes for Selective Separation of Target Ions. Journal of Membrane Science 2021, 634, 119407.
    (18) Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews 2020, 120 (16), 8814-8933.
    (19) Ding, S.-Y.; Wang, W. Covalent Organic Frameworks (Cofs): From Design to Applications. Chemical Society Reviews 2013, 42 (2), 548-568.
    (20) Bagheri, A. R.; Su, H.; Shokrollahi, A.; Samadi, A.; Song, C.; Kong, L.; Yi, S.; Zhao, S. Covalent Organic Framework-Based Materials for Ion Separation: A Review. Chemical Engineering Journal 2024, 158745.
    (21) Meng, Q.-W.; Zhu, X.; Xian, W.; Wang, S.; Zhang, Z.; Zheng, L.; Dai, Z.; Yin, H.; Ma, S.; Sun, Q. Enhancing Ion Selectivity by Tuning Solvation Abilities of Covalent-Organic-Framework Membranes. Proceedings of the National Academy of Sciences 2024, 121 (8), e2316716121.
    (22) Saputra, E.; Prawiranegara, B. A.; Sugesti, H.; Nugraha, M. W.; Utama, P. S. Covalent Triazine Framework: Water Treatment Application. Journal of Water Process Engineering 2022, 48, 102874.
    (23) Ge, S.; Wei, K.; Peng, W.; Huang, R.; Akinlabi, E.; Xia, H.; Shahzad, M. W.; Zhang, X.; Xu, B. B.; Jiang, J. A Comprehensive Review of Covalent Organic Frameworks (Cofs) and Their Derivatives in Environmental Pollution Control. Chemical Society Reviews 2024.
    (24) Song, H.; Luo, L.; Wang, S.; Zhang, G.; Jiang, B. Advances in Poly (Heptazine Imide)/Poly (Triazine Imide) Photocatalyst. Chinese Chemical Letters 2024, 35 (10), 109347.
    (25) Lau, V. W. h.; Lotsch, B. V. A Tour‐Guide through Carbon Nitride‐Land: Structure‐and Dimensionality‐Dependent Properties for Photo (Electro) Chemical Energy Conversion and Storage. Advanced Energy Materials 2022, 12 (4), 2101078.
    (26) Chi, H. Y.; Chen, C.; Zhao, K.; Villalobos, L. F.; Schouwink, P. A.; Piveteau, L.; Marshall, K. P.; Liu, Q.; Han, Y.; Agrawal, K. V. Unblocking Ion‐Occluded Pore Channels in Poly (Triazine Imide) Framework for Proton Conduction. Angewandte Chemie International Edition 2022, 61 (40), e202207457.
    (27) Ham, Y.; Maeda, K.; Cha, D.; Takanabe, K.; Domen, K. Synthesis and Photocatalytic Activity of Poly (Triazine Imide). Chemistry–An Asian Journal 2013, 8 (1), 218-224.
    (28) Kessler, F. K.; Schnick, W. From Heptazines to Triazines - on the Formation of Poly(Triazine Imide). Zeitschrift Fur Anorganische Und Allgemeine Chemie 2019, 645 (12), 857-862.
    (29) Lau, V. W. H.; Lotsch, B. V. A Tour-Guide through Carbon Nitride-Land: Structure- and Dimensionality-Dependent Properties for Photo(Electro)Chemical Energy Conversion and Storage. Advanced Energy Materials 2022, 12 (4).
    (30) Lin, L.; Wang, C.; Ren, W.; Ou, H.; Zhang, Y.; Wang, X. Photocatalytic Overall Water Splitting by Conjugated Semiconductors with Crystalline Poly (Triazine Imide) Frameworks. Chemical Science 2017, 8 (8), 5506-5511.
    (31) Liao, C.-Z.; Lau, V. W.-h.; Su, M.; Ma, S.; Liu, C.; Chang, C.-K.; Sheu, H.-S.; Zhang, J.; Shih, K. Unraveling the Structure of the Poly (Triazine Imide)/Licl Photocatalyst: Cooperation of Facile Syntheses and a Low-Temperature Synchrotron Approach. Inorganic chemistry 2019, 58 (23), 15880-15888.
    (32) McDermott, E. J.; Wirnhier, E.; Schnick, W.; Virdi, K. S.; Scheu, C.; Kauffmann, Y.; Kaplan, W. D.; Kurmaev, E. Z.; Moewes, A. Band Gap Tuning in Poly (Triazine Imide), a Nonmetallic Photocatalyst. The Journal of Physical Chemistry C 2013, 117 (17), 8806-8812.
    (33) Liu, M.; Wei, C.; Zhuzhang, H.; Zhou, J.; Pan, Z.; Lin, W.; Yu, Z.; Zhang, G.; Wang, X. Fully Condensed Poly (Triazine Imide) Crystals: Extended Π‐Conjugation and Structural Defects for Overall Water Splitting. Angewandte Chemie International Edition 2022, 61 (2), e202113389.
    (34) Jing, L.; Li, Z.; Chen, Z.; Li, R.; Hu, J. Engineering Polyheptazine and Polytriazine Imides for Photocatalysis. Angewandte Chemie 2024, 136 (49), e202406398.
    (35) Liang, X.; Xue, S.; Yang, C.; Ye, X.; Wang, Y.; Chen, Q.; Lin, W.; Hou, Y.; Zhang, G.; Shalom, M. The Directional Crystallization Process of Poly (Triazine Imide) Single Crystals in Molten Salts. Angewandte Chemie International Edition 2023, 62 (14), e202216434.
    (36) Pauly, M.; Kröger, J.; Duppel, V.; Murphey, C.; Cahoon, J.; Lotsch, B. V.; Maggard, P. A. Unveiling the Complex Configurational Landscape of the Intralayer Cavities in a Crystalline Carbon Nitride. Chemical Science 2022, 13 (11), 3187-3193.
    (37) Villalobos, L. F.; Vahdat, M. T.; Dakhchoune, M.; Nadizadeh, Z.; Mensi, M.; Oveisi, E.; Campi, D.; Marzari, N.; Agrawal, K. V. Large-Scale Synthesis of Crystalline G-C3n4 Nanosheets and High-Temperature H2 Sieving from Assembled Films. Science advances 2020, 6 (4), eaay9851.
    (38) Schlomberg, H.; Kröger, J.; Savasci, G. k.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J. r. Structural Insights into Poly (Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials 2019, 31 (18), 7478-7486.
    (39) May, H. Pyrolysis of Melamine. Journal of Applied Chemistry 1959, 9 (6), 340-344.
    (40) Shahbaz, M.; Urano, S.; LeBreton, P. R.; Rossman, M. A.; Hosmane, R. S.; Leonard, N. J. Tri-S-Triazine: Synthesis, Chemical Behavior, and Spectroscopic and Theoretical Probes of Valence Orbital Structure. Journal of the American Chemical Society 1984, 106 (10), 2805-2811.
    (41) Burmeister, D.; Tran, H. A.; Müller, J.; Guerrini, M.; Cocchi, C.; Plaickner, J.; Kochovski, Z.; List‐Kratochvil, E. J.; Bojdys, M. J. Optimized Synthesis of Solution‐Processable Crystalline Poly (Triazine Imide) with Minimized Defects for Oled Application. Angewandte Chemie International Edition 2022, 61 (3), e202111749.
    (42) Elma, M.; Yacou, C.; Diniz da Costa, J. C.; Wang, D. K. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes 2013, 3 (3), 136-150.
    (43) Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chemistry–A European Journal 2008, 14 (27), 8177-8182.
    (44) Lee, G.; Kossowska, D.; Lim, J.; Kim, S.; Han, H.; Kwak, K.; Cho, M. Cyanamide as an Infrared Reporter: Comparison of Vibrational Properties between Nitriles Bonded to N and C Atoms. The Journal of Physical Chemistry B 2018, 122 (14), 4035-4044.
    (45) Yu, J.; Cai, M.; Cheng, Q.; Chen, F.; Bai, J. q.; Wei, Y.; Chen, J.; Sun, S. Understanding the Poly (Triazine Imide) Crystals Formation Process: The Conversion from Heptazine to Triazine. Chemistry–A European Journal 2024, 30 (6), e202302982.
    (46) Lau, V. W.-h.; Lu, C.-F.; Putri Wijaya, N.; Lutan, M. Can X-Ray Photoelectron Spectroscopy Characterize Photocatalytically Relevant Defects in Graphitic Carbon Nitride? Re-Examining Peak Assignment and Quantification Using Model Compounds. Chemistry of Materials 2024, 36 (19), 9762-9774.
    (47) Heymann, L.; Schiller, B. r.; Noei, H.; Stierle, A.; Klinke, C. A New Synthesis Approach for Carbon Nitrides: Poly (Triazine Imide) and Its Photocatalytic Properties. Acs Omega 2018, 3 (4), 3892-3900.
    (48) Sing, K. S.; Williams, R. T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology 2004, 22 (10), 773-782.
    (49) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (Iupac Technical Report). Pure and applied chemistry 2015, 87 (9-10), 1051-1069.
    (50) Joshi, R.; Carbone, P.; Wang, F.-C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H.; Geim, A. K.; Nair, R. R. Precise and Ultrafast Molecular Sieving through Graphene Oxide Membranes. science 2014, 343 (6172), 752-754.
    (51) Kadhim, M.; Gamaj, M. I. Estimation of the Diffusion Coefficient and Hydrodynamic Radius (Stokes Radius) for Inorganic Ions in Solution Depending on Molar Conductivity as Electro-Analytical Technique-a Review. J. Chem. Rev 2020, 2 (3), 182-188.

    無法下載圖示 校內:2030-03-31公開
    校外:2030-03-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE