簡易檢索 / 詳目顯示

研究生: 王家慧
Wang, Jia-Hui
論文名稱: 以低成本磷酸銨鎂沉澱法回收處理TFT-LCD廢水氨氮之可行性評估:評估最佳化學劑量比、成本與肥料安全性
Assessment of the Application of Low-Cost MAP Precipitation Method for the Recovery of NH4+ from the Effluent of UASB Treating TFT-LCD Wastewater
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 47
中文關鍵詞: 鳥糞石光電廢水磷酸銨鎂滷水低成本肥料氨氮回收
外文關鍵詞: struvite, magnesium ammonia phosphate, TFT-LCD wastewater, brine, low-cost, fertilizer, recovery ammonia
相關次數: 點閱:119下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,台灣光電半導體業等嶄新的高科技產業發展蓬勃,其中薄膜液晶螢幕(Thin Film Transistor Liquid Crystal Display, TFT-LCD)由於可應用在許多相關科技上而使需求與日俱增。但是隨著需求與產量增加,光電產業的廢水量也逐日劇增。其中的顯影劑中的氫氧化四甲基胺(Tetramethylammonium hydroxide, TMAH)經過處理後,產生高濃度氨氮,如果排入河川,會造成水體難以抹滅的衝擊。有鑑於此,眾多工業開始發展降低氨氮濃度技術。
    本研究以針對實廠(I廠)所產生之高濃度氨氮廢水結合磷酸銨鎂沉澱法(MAP, Magnesium ammonia phosphate hexhydrate, struvite) 來降低氨氮濃度並且回收氨氮。為了使其可以實際應用,所採用之原料以最低成本考量採用。在此研究中,低成本是指使用同一家公司產的磷酸為以及滷水為磷及鎂的來源。其磷酸來源為使用同一家公司(I廠)之磷酸蒸發液,以及苗栗通霄精鹽場所使用的苦滷水提供鎂離子來源,以降低成本。在本研究中,找出回收氨氮之最佳氨氮、鎂離子、磷酸之莫爾數比及pH值,並且評估其經濟效益,並且以種植葉萵苣(Arden lettuce)來觀察其施肥效益。並且檢驗其重金屬含量以確認其食用安全性,並提供建議此方法是否可行。
    此研究之目的可分為四個,第一,以氨氮的莫爾數比為1,並且以磷酸的莫爾數分之鎂離子的莫爾數之P/M值建議最佳配比。第二,建議最佳pH值。第三,成本效益評估。第四,推估其MAP品質。
    針對第一點之結果所得,其對應之莫爾數比混合所得之氨氮、鎂離子、磷酸之最佳配比為1: 1.0 : 1.0 至 1: 1.0: 1.2,氨氮回收率之各批次之範圍則為68.53%~96.12%,其中位數為89.78%。針對第二點結果所得,在最佳pH值為9.0~9.9,氨氮回收率為95.22%~96.89%,其中位數為96.29%。針對第三點結論所得,以原本處理方法所消耗的金額,及原先滷水販售價格以及磷酸蒸發塔販售價格之總額和以磷酸銨鎂沉澱法所產出之肥料總和來比較是否符合經濟效益。以產出一公斤的鳥糞石來計算,以原本的方法來處理氨氮廢水需要耗費以及回收的磷酸可販賣之價格的總和需消耗14,260元新台幣,以磷酸氨鎂沉澱法之價格的總和需要消耗70新台幣,故磷酸氨鎂法符合經濟效益。針對第四點其結論所得,此實驗所產出的最高之鳥糞石純度為59.13%,其營養成分之氮成分含4.45%、磷酐含32.59%、氧化鉀含1.8%以及有機質含32%。重金屬檢測結果Ni及Cu等重金屬超過肥料標準。並且以盆栽實驗來試驗種植之植物是否會有重金屬汙染,並且來以重金屬是否超過標準來決定其食用安全性,其檢驗結果為植體中的Cd及Cu超過法定標準。故其種植出來之蔬菜不具食用安全性。
    綜合以上三點結論,最佳P/M 值是1.0~1.2,最佳pH值為9.0~9.9,MAP沉澱法暫時為不可行。若能夠去除光電沸水中之懸浮固體中即可降低肥料中之重金屬,如此一來,極有可能符合有機肥料及植物體中重金屬標準。若能夠解決重金屬的問題,MAP沉澱法即為可行。

    Optoelectronic semiconductor and high technology industries are growing in recent years in Taiwan. Among these industries, Thin Film Transistor Liquid Crystal Display (TFT-LCD) can be applied in many relative high technology products so it made the demand and output become higher and higher. As the output higher, the volume of wastewater becomes higher. The wastewater contains tetra-methyl-ammonium-hydroxide (TMAH), which processes with upflow anaerobic sludge blanket reactor (UASB). The TMAH transferred to ammonia then made the wastewater contains high concentration of NH4+. If the high concentration NH4+ of wastewater effluent to water body, it will cause irreversible impact. Therefore, TFT-LCD industries start to develop new technologies for reducing ammonia concentration.

    In this work, we evaluate the effectiveness and feasibility of applying a magnesium phosphate precipitation (MAP) method for further reducing the level of NH4+ by recovery of nitrogen from the effluent of UASB treating TFT-LCD wastewater, and generating struvite (MgNH4PO4‧6H2O) solids as slow-released fertilizer. Additionally, with an intention to cost down the MAP approach, source materials including magnesium from concentrated seawater brine, and phosphate recovered from the TFT-LCD manufacturing process, were applied in this study. First, the operational pH value and optimum molar ratio between ammonia from the UASB effluent, magnesium from the concentrated seawater brine and recovered phosphate, were determined to maximize the recovery rate of ammonia. Second, the cost of generating struvite from the proposed approach was evaluated. Third, the quality of generated struvite was assessed by analyzing the nutrient content, and the concentration of heavy metals in soils and vegetation when applying it as fertilizer.

    First, the highest median ammonia recovery rate of 89.78% (68.53% to 96.12%) was attained when the range of molar ratio (NH¬4+: PO43- : Mg2+) was adjusted to between 1: 1.0 : 1 to 1: 1.2: 1. The best pH value for synthesizing struvite solids using the proposed MAP approach is between 9.0 to 9.9. Second, the cost for generating 1 kg struvite solids (59% purity) is estimated to be 2 NTD/Kg-struvite by taking both the cost of adjusting pH value 44 NTD/Kg-struvite and purchasing concentrated seawater brine is 28 NTD/kg-struvite. The generated struvite solids (59% purity) consist of 4.5% nitrogen, 32.6% phosphorous, 1.8% potassium oxide and 32% organic matter. The concentration of Ni and Cu within the struvite solids exceed the limits of fertilizer standard in Taiwan. The heavy metal resource of Ni and Cu is from suspend solid in TFT-LCD wastewater. The original way to treat wastewater have to spend 14,260 NTD/Kg-struvite. The MAP precipitate method to treat wastewater have to spend 70 NTD/Kg-struvite. Therefore, the MAP precipitate method is cost effective. If the problem of heavy metal can be solve, it is feasible to apply to the nowadays society.

    口試合格證明 I 致謝 II 目錄 IV 表目錄 V 圖目錄 VI Abstract 1 摘要 3 Chapter 1 Introduction 5 1.1 Preface 5 1.2 Motivation 6 1.3 Objective 7 Chapter 2 Literature Review 8 2.1 Source and characteristic of TFT-LCD waste water. 8 2.2 Magnesium ammonia phosphate (MAP)-Struvite 11 2.3 Other wastewater treated by synthesis of struvite. 12 Chapter 3 Materials and Methods 14 3.1 The procedure and the fame work 14 3.2 Water quality of analysis 15 3.2.1 The TFT-LCD waste water 15 3.2.2 The brine 15 3.2.3 The recovered phosphate 15 3.3 Analytical Methods 16 3.3.1 General analysis 16 3.3.2 Instrumental analysis: Inductively coupled plasma-atomic emission spectroscopy (ICP-AES), spectrometer. 16 3.4 Experiment procedure 17 3.4.1 Experiment principle 17 3.4.2 Cost analysis 19 3.4.3 Fertility analysis 19 3.4.4 Experiments to identify potential sources of heavy metal 20 Chapter 4 Result and Discussion 24 4.1 Source materials analysis 24 4.2 Determination of the best molar ratio and pH 27 4.3 Chemical analysis of the synthesize MAP 29 4.4 Potential sources of heavy metals 31 4.5 Cost of MAP approach treating wastewater 33 Chapter 5 Conclusion and Suggestion 36 5.1 Conclusion 36 5.2 Suggestion 36 References 38 APPENDIX 41

    Anthony, C. (1982). Biochemistry of methylotrophs: Academic Press.
    Apha, A. (1995). WEF, 1998. Standard methods for the examination of water and wastewater, 20.
    Asakawa, S., Sauer, K., Liesack, W., & Thauer, R. K. (1998). Tetramethylammonium: coenzyme M methyltransferase system from Methanococcoides sp. Archives of microbiology, 170(4), 220-226.
    Bhattarai, K., Taiganides, E. P., & Yap, B. (1989). Struvite deposits in pipes and aerators. Biological Wastes, 30(2), 133-147.
    Booram, C. (1975). Crystalline phosphate precipitation from anaerobic animal waste treatment lagoon liquors. Trans. Am. Soc. Civ. Eng., 18, 340-343.
    Borgerding, J. (1972). Phosphate deposits in digestion systems. J. Wat. Pollut. Control Fed., 44(5), 813-819.
    Burke, S., Heathwaite, L., & Preedy, N. (2004). Transfer of phosphorus to surface waters; eutrophication. Phosphorus in environmental technology: Principles and applications, 120-146.
    El Diwani, G., El Rafie, S., El Ibiari, N. N., & El-Aila, H. I. (2007). Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer. Desalination, 214(1-3), 200-214. doi: 10.1016/j.desal.2006.08.019
    Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A., & Ikeda, M. (2001). An efficient treatment technique for TMAH wastewater by catalytic oxidation. Semiconductor Manufacturing, IEEE Transactions on, 14(3), 202-206.
    Jeong, Y.-K., & Hwang, S.-J. (2005). Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting. Bioresource Technology, 96(1), 1-6.
    Keith, L. H., Crummett, W., Deegan Jr, J., Libby, R. A., Taylor, J. K., & Wentler, G. (1983). Principles of environmental analysis. Analytical chemistry, 55(14), 2210-2218.
    Knoop, W. (1978). Why a fertilizer burns. GreenMaster, 14, 12-13.
    Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477.
    Lei, C.-N. (2008). TFT-LCD 有機廢水在好氧, 缺氧及厭氧環境下分解機制之研究. 成功大學環境工程學系學位論文, 1-62.
    Li, X., & Zhao, Q. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20(2), 171-181.
    Lind, B.-B., Ban, Z., & Bydén, S. (2000). Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology, 73(2), 169-174. doi: http://dx.doi.org/10.1016/S0960-8524(99)90157-8
    Münch, E. v., Benesovsky-Scott, A., Josey, J., & Barr, K. (2001). Making a business from struvite crystallisation for wastewater treatment: turning waste into gold. Paper presented at the 2 nd international conference on recovery of phosphates from sewage and animal wastes. Noordwijkerhout, Holland.
    Min, Q. W., & Jiao, Y. L. (2002). Effects of Agricultural Non-point Source Pollution on Eutrophica tion of Water Body and Its Control Measure [J]. Acta Ecologica Sinica, 3, 001.
    Nelson, N. O., Mikkelsen, R. L., & Hesterberg, D. L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresource Technology, 89(3), 229-236.
    Ohlinger, K., Young, T., & Schroeder, E. (1998). Predicting struvite formation in digestion. Water Res, 32(12), 3607-3614.
    Omar, N. B., Entrena, M., González‐Muñoz, M., Arias, J., & Huertas, F. (1994). Effects of pH and phosphate on the production of struvite by Myxococcus xanthus. Geomicrobiology Journal, 12(2), 81-90.
    Ryu, H.-D., Lim, C.-S., Kang, M.-K., & Lee, S.-I. (2012). Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. Journal of Hazardous Materials, 221, 248-255. doi: 10.1016/j.jhazmat.2012.04.038
    Tanaka, K. (1994). Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. Journal of fermentation and bioengineering, 78(5), 386-388.
    Taruya, T., Ueno, Y., & Fujii, M. (2000). Development of phosphorus resource recycling process from sewage. Paper presented at the 1st world water congress of IWA, Paris.
    Tilley, E., Gantenbein, B., Khadka, R., Zurbrügg, C., & Udert, K. (2009). Social and economic feasibility of struvite recovery from Urine at the community level in Nepal. Paper presented at the international conference on nutrient recovery from wastewater streams, Vancouver, Canada. p.
    Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater, 166(1), 260-269. doi: 10.1016/j.jhazmat.2008.11.025
    王崇臣, & 郝晓地. (2009). 鸟粪石分析与表征技术综述. 环境科学与管理, 34(12), 88-91.
    刘小燕, & 郑乐平. (2008). 磷酸铵镁法处理高浓度氨氮废水的研究. 工业水处理, 28(8), 45-49.
    何岩, 赵由才, & 周恭明. (2008). 高浓度氨氮废水脱氮技术研究进展. 工业水处理, 28(1), 1-4.
    吳政龍, 林宏榮, 郭浩然, & 蘇世斌. (2007). 氫氧化四甲基銨 (TMAH) 中毒. 中華職業醫學雜誌, 14(2), 67-76.
    吴姗蔚, 陈国辉, 廖英儒, 曾志根, 郭肖文, & 徐丽文. (2013). MAP 沉淀法处理高浓度氨氮废水工艺应用. 中国化工贸易, 5(7), 450-450.
    李展能. (2008). TFT-LCD 有機廢水在好氧, 缺氧及厭氧環境下分解機制之研究.
    林后志, 林舜宏, 陳睿斌, 黃俊欽, & 呂理安. (2014). 以磷酸銨鎂法搭配中央合成及反應曲面法實驗設計探討科學園區聯合污水廠廢水中氨氮去除之研究 (Vol. 13). 中華民國環境工程學會2014 廢水處理技術研討會: 中欣工程.
    . 肥料檢驗項目及檢驗方法. (2012).
    晏波, 胡成生, 朱凡, & 韦朝海. (2006). 磷酸铵镁沉淀法去除 NH3-N 的影响因素及应用研究. 环境化学, 24(6), 685-689.
    張明暉, 簡宣裕, & 劉禎祺. (2005). 有機質肥料介紹. 合理化施肥專刊:, 255-266.
    陳宏瑋. (2011). 薄膜生物反應器系統處理光電廢水硝化效能與氨氧化微生物族群之評估. 成功大學環境工程學系學位論文, 1-112.
    馮育澤. (2012). TFT-LCD 製程廢水回收系統薄膜阻塞問題研究. 成功大學環境工程學系學位論文, 1-103.
    张勤, 杨彬彬, 潘水秀, & 张智. (2010). MAP 法处理高浓度氨氮废水技术研究进展. 四川环境, 29(5), 93-97.
    簡道南,新創事業處,肥料與植物生長,合肥月刊,第四十四卷第二期,2003年2月15日出刊

    中華肥料協會,作物施肥手冊,2005年,ISBN 986-00-3335-8

    下載圖示 校內:2019-02-19公開
    校外:2019-02-19公開
    QR CODE