| 研究生: |
王怡之 Wang, Yi-Jhih |
|---|---|
| 論文名稱: |
台灣白花蝴蝶蘭的第七與第十三遺傳連鎖群在蘭嶼姬蝴蝶蘭染色體上的共線性 Chromosome synteny of genetic linkage groups 7 and 13 between Phalaenopsis aphrodite subsp. formosana and Phalaenopsis equestris |
| 指導教授: |
張松彬
Chang, Song-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 台灣白花蝴蝶蘭 、育種親本 、蘭嶼姬蝴蝶蘭 、遺傳連鎖群 、5S核醣體DNA |
| 外文關鍵詞: | P. aphrodite, P. equestris, 5S rDNA, EFS, comparative Fluorescence in situ hybridization (FISH) |
| 相關次數: | 點閱:125 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的兩種蝴蝶蘭的原生種,台灣白花蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)與蘭嶼姬蝴蝶蘭(P. equestris)為重要的育種親本,蝴蝶蘭基因組研究能有助於系統性育種,其中遺傳連鎖圖譜和染色體核型分析等細胞遺傳研究在育種中扮演相當重要的角色,但目前蝴蝶蘭的細胞遺傳相關研究依然相當缺乏。本研究使用高解析度的粗絲期(pachytene)染色體為材料,利用螢光原位雜合(fluorescent in situ hybridization, FISH)技術分析蘭嶼姬蝴蝶蘭染色體圖譜的5S 核醣體DNA (ribosomal DNA, rDNA)、EFS (Early flowering in short days)、第七(LG07)、第十三(LG13)遺傳連鎖群(genetic linkage groups)與台灣白花蝴蝶蘭基因序列在染色體上的分布,並將兩種原生蝴蝶蘭的染色體圖譜做比較性核型分析。根據結果顯示,在台灣白花蝴蝶蘭第十三對染色體的第十三遺傳連鎖群與EFS位於蘭嶼姬蝴蝶蘭第十六對染色體上;位於台灣白花蝴蝶蘭第七對染色體的第七遺傳連鎖群則是在蘭嶼姬蝴蝶蘭第三對染色體上;5S核醣體DNA在台灣白花蝴蝶蘭有兩個基因座(loci),分別位於第六對與第十二對染色體上,而在蘭嶼姬蝴蝶蘭只有一個基因座位於第十二對染體上。經比較性核型分析結果顯示這兩個台灣白花蝴蝶蘭的遺傳連鎖群在蘭嶼姬蝴蝶蘭上皆具共線性(Synteny)。5S核醣體DNA 在兩物種都坐落於短臂異染色質區與真染色質交界區域。EFS在兩物種間都坐落於長臂末端且與scaffold_46在兩物種間有相對位置互換的現象。本篇研究提供蝴蝶蘭細胞遺傳學演化研究有用資訊。
There are two native Phalaenopsis species in Taiwan, Phalaenopsis aphrodite subsp. formosana and P. equestris, and both are important breeding parents Phalaenopsis genome research can contribute to systematic breeding. Cytogenetic studies such as genetic linkage maps and karyotype analysis play an important role in breeding, but the cytogenetic related research of Phalaenopsis is still quite little. In this study, we integrated two genetic linkage groups 7, 13, EFS, and 5S rDNA genes of P. aphrodite to high-resolution pachytene chromosomes of P. equestris by using comparative fluorescence in situ hybridization (FISH) technique. Our results show that the genetic linkage group 13 (LG13) and EFS are located on the chromosome 13 of P. aphrodite and on the chromosome 16 of P. equestris. The genetic linkage group 7 (LG07) is located on the chromosome 7 of P. aphrodite and on the chromosome 3 of P. equestris. The 5S ribosomal DNA (5S rDNA) has two loci in P. aphrodite located on chromosomes 6 and 12, and only one locus in P. equestris located on chromosome 12. These results indicate that the locations of our selected two genetic linkage groups are conserved on chromosomes between P. aphrodite and P. equestris. The 5S ribosomal DNA located in the short-arm heterochromatin and euchromatin junction region in both species. In both species EFS is located at the end of the long arm and has a relative positional exchange with scaffold_46 between the two species. Our current results provide cytogenetic evolutionary and breeding studies in Phalaenopsis orchids.
許惠嵐. (2016). 台灣白花蝴蝶蘭第七條染色體上遺傳標誌的染色體圖譜.
蔡雅閔. (2016). 台灣白花蝴蝶蘭的第一與第十七遺傳連鎖群在蘭嶼姬蝴蝶蘭染色體上的共線性.
薛豪彥. (2012). 蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析. 臺灣大學農藝學研究所學位論文, 1-72.
Avila, F., Baily, M. P., Merriwether, D. A., Trifonov, V. A., Rubes, J., Kutzler, M. A., Raudsepp, T. (2015). A cytogenetic and comparative map of camelid chromosome 36 and the minute in alpacas. Chromosome Res, 23(2), 237-251. doi:10.1007/s10577-014-9463-3
Britt, J. (2000). The status of the commercial production of potted orchid around the world. HortTechnology, 10(3), 435-436.
Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W. C., Liu, K. W., Liu, Z. J. (2015). The genome sequence of the orchid Phalaenopsis equestris. Nat Genet, 47(1), 65-72. doi:10.1038/ng.3149
Chao, Y. T., Chen, W. C., Chen, C. Y., Ho, H. Y., Yeh, C. H., Kuo, Y. T., Shih, M. C. (2018). Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol J. doi:10.1111/pbi.12936
Christenson, E. A. (2001). Phalaenopsis: a monograph. Portland, Or.: Timber Press 330p., 62p. of col. plates.-illus.. ISBN, 881924946.
Endo, M., & Ikusima, I. (1989). Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant and cell physiology, 30(1), 43-47.
Guo, W.-J., & Lee, N. (2006). Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. formosa. Journal of the American Society for Horticultural Science, 131(3), 320-326.
Heslop-Harrison, J. (2000). Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. The Plant Cell, 12(5), 617-635.
Hsiao, S. T.-F., Asgari, A., Lokmic, Z., Sinclair, R., Dusting, G. J., Lim, S. Y., & Dilley, R. J. (2011). Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem cells and development, 21(12), 2189-2203.
International Rice Genome Sequencing, P. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793-800. doi:10.1038/nature03895
Iovene, M., Cavagnaro, P. F., Senalik, D., Buell, C. R., Jiang, J., & Simon, P. W. (2011). Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Research, 19(4), 493-506.
Iovene, M., Wielgus, S. M., Simon, P. W., Buell, R., & Jiang, J. (2008). Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics.
Jiang, J., & Gill, B. S. (2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 49(9), 1057-1068.
Jiang, J., Gill, B. S., Wang, G.-L., Ronald, P. C., & Ward, D. C. (1995). Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proceedings of the National Academy of Sciences, 92(10), 4487-4491.
Kao, Y. (2001). Differential Accumulation of Heterochromatin as a Cause for Karyotype Variation in Phalaenopsis Orchids. Annals of Botany, 87(3), 387-395. doi:10.1006/anbo.2000.1348
Kato, A., Lamb, J. C., & Birchler, J. A. (2004). Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences, 101(37), 13554-13559.
Keim, P., Price, L., Klevytska, A., Smith, K., Schupp, J., Okinaka, R., Hugh-Jones, M. (2000). Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. Journal of bacteriology, 182(10), 2928-2936.
Langer-Safer, P. R., Levine, M., & Ward, D. C. (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences, 79(14), 4381-4385.
Lin, S., Lee, H.-C., Chen, W.-H., Chen, C.-C., Kao, Y.-Y., Fu, Y.-M., Lin, T.-Y. (2001). Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society for Horticultural Science, 126(2), 195-199.
Lou, Q., Iovene, M., Spooner, D. M., Buell, C. R., & Jiang, J. (2010). Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 119(4), 435-442.
Murata, M., Heslop‐Harrison, J., & Motoyoshi, F. (1997). Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi‐color fluorescence in situ hybridization with cosmid clones. The Plant Journal, 12(1), 31-37.
Ping, C., Lee, Y.-I., Lin, T., Yang, W., & Lee, G. (2010). Crassulacean acid metabolism in Phalaenopsis aphrodite var. formosa during different developmental stages. Paper presented at the I International Orchid Symposium 878.
Potato Genome Sequencing, C., Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Visser, R. G. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195. doi:10.1038/nature10158
Saintenac, C., Jiang, D., Wang, S., & Akhunov, E. (2013). Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda), 3(7), 1105-1114. doi:10.1534/g3.113.005819
Shindo, K., & Kamemoto, H. (1963). Karyotype analysis of some species of Phalaenopsis. Cytologia, 28(4), 390-398.
Tomato Genome, C. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119
Torres, G. A., Gong, Z., Iovene, M., Hirsch, C. D., Buell, C. R., Bryan, G. J., Jiang, J. (2011). Organization and evolution of subtelomeric satellite repeats in the potato genome. G3: Genes, Genomes, Genetics, 1(2), 85-92.
Tsai, C.-C., Chiang, Y.-C., Lin, Y.-S., Liu, W.-L., & Chou, C.-H. (2012). Plastid trnL intron polymorphisms among Phalaenopsis species used for identifying the plastid genome type of Phalaenopsis hybrids. Scientia Horticulturae, 142, 84-91. doi:10.1016/j.scienta.2012.05.004
Wang, C. J., Harper, L., & Cande, W. Z. (2006). High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell, 18(3), 529-544. doi:10.1105/tpc.105.037838
Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J., & Tanksley, S. D. (2006). Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics.
Watt, M., Hugenholtz, P., White, R., & Vinall, K. (2006). Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol, 8(5), 871-884. doi:10.1111/j.1462-2920.2005.00973.x
Zhang, H., Guan, H., Li, J., Zhu, J., Xie, C., Zhou, Y., Liu, Z. (2010). Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and applied genetics, 121(8), 1613-1621.
Zhang, J.-c., Yao, W., Dong, C., Yang, C., Ren, Q., Ma, M., Hashimoto, K. (2015). Comparison of ketamine, 7, 8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology, 232(23), 4325-4335.
Zhong, X.-b., Fransz, P. F., Wennekes-van Eden, J., Zabel, P., Van Kammen, A., & de Jong, J. H. (1996). High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescencein-situ hybridisation. Plant Molecular Biology Reporter, 14(3), 232-242.