| 研究生: |
廖晨佑 Liao, Chen-Yu |
|---|---|
| 論文名稱: |
微渦輪引擎燃油啟動霧化器之設計與研究 Study on Starting Fuel Atomizer Design of Micro Gas Turbine Engine |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 渦輪引擎 、燃油啟動霧化器 、渦旋腔直徑 、渦旋腔進入口寬度 |
| 外文關鍵詞: | Gas Turbine, Atomizer, Swirl Chamber Diameters, Inlet Orifices |
| 相關次數: | 點閱:164 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對微型渦輪引擎所使用之壓力式渦旋霧化器,進行不同參數設計,在釋流孔片設計中固定釋流孔孔徑(d0)大小為0.15 mm,同時維持相同l0/d0、LP/DP與LS值下,藉由改變渦漩腔進入孔口(DP)大小、渦漩腔直徑(DS)以及液體噴射壓力,來對壓力式渦旋霧化器之各項噴霧性能,如流量、流數、噴霧錐角與平均粒徑(SMD)等進行探討。
對於霧化器之噴霧錐角而言,於實驗結果中發現,當渦旋腔直徑(Ds)在較小值時,霧化器會有較大之霧化錐角,在此時改變渦旋腔進入口寬度(DP),能對霧化器之霧化錐角產生較明顯的影響,其影響趨勢為當渦旋腔進入口寬度(DP)逐漸縮小,霧化器噴霧錐角相對就提高,實驗中所得最佳霧化錐角設計參數為Ds =1.5 mm搭配DP =0.2 mm所得之79°。
另外吾人藉由Insitec雷射繞境分析儀,來對霧化器之平均粒徑進行分析所得結果中發現,從粒徑分佈圖中,發現當設計參數為Ds=1.5mm搭配DP=0.2mm,此時於各壓力下之粒徑分佈接為可接受範圍,比參考噴嘴之粒徑分佈略優,另外不同渦旋腔進入口寬度(DP)對於平均粒徑(SMD)較有影響,從實驗結果中可發現當渦旋腔進入口寬度(DP)較小時,平均粒徑SMD也明顯較小。
An experimental investigation was conducted to study the starting fuel atomizer design and to measure its spray characteristics of swirl chamber diameters (DS) and inlet orifices (DP). With the same orifice diameter (d0), l0/d0, LP/DP and LS, the different swirl chamber diameters (DS) and inlet orifices (DP) were used to investigate the fuel starting atomizer.
According to the experimental results, the swirl chamber diameters (DS) and inlet orifices (DP) did not play an important role in the volume flow rate under condition of the fixed discharge orifice diameter (d0) and liquid jet pressure. The difference between swirl chamber diameter (DS) and inlet orifice (DP) could lead the spray angle to change. Here, an increase in the spray angle is found with decreasing swirl chamber diameter (DS). Conversely, the spray angle decreased if the swirl chamber diameter (DS) was increasing. It is also interesting to note that the atomizer spray angle increased with decreasing inlet orifice (DP) and decreased with increasing inlet orifice (DP). In contrast with the increasing inlet orifice, the decreasing inlet orifice had a greater influence on the spray angle.
[1] Lefebvre, A. H., Gas Turbine Combustion, Hemisphere Publishing Corporation, New York, 2nd Edition, 1983.
[2] Lefebvre, A. H., Atomization and Sprays, Hemisphere Publishing Corporation,4th Edition, New York, 1989.
[3] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Bureau of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[4] Dowbrowski, N. and Fraser, R. P., Trans. Royal Society London, Series A, Vol. 247, pp.101-105 , 1945.
[5] Dowbowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chemical Engineering Science., Vol. 18, pp.203-214, 1963.
[6] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., “An Experimental Study of the Effect of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbine and Power, Vol.114, pp.39-45, 1992.
[7] Fraser, R. P., “Liquid Fuel Atomization,” 6th Symposium(International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
[8] C.H. Lee, Rolf D. Reitz, “An Experimental Study of the effect of Gas density on the Distortion and breakup Mechanism of drops in high speed Gas stream,” International Journal of Multiphase Flow , Vol. 26, pp.229-244, 2000
[9] Crapper, G. D., Dombrowski, N., Jepson, W. P. and Pyott, G. A. D., “A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” Journal of Fluid Mech., Vol. 57, part 4, pp.671-672, 1972.
[10] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report , No. 8, pp.61-92, 1982.
[11] Kutty, P. S., Narasimhan, M. V., and Narayanaswamy, K., “Design and prediction of Discharge Rate, Cone Angle and Air Core Diameter of Swirl Chamber Atomizers,” Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp.93-100, 1984.
[12] Rizk, N. K., and Lefebvre, A. H., “Internal Flow Characteristics of Simplex Swirl Atomizers,” AIAA Journal, pp.84-124, 1984.
[13] Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., “Correlations for Prediction of Discharge Rate, Cone Angle and Air Core Diameter of Swirl Spray Atomizers,” Proceedings of 2nd International Conference on Liquid Atomization and Spray System, pp.91-97, 1982.
[14] Suyari, M. and Lefebvre, A. H., “Film Thickness Measurements in a Simplex Swirl Atomizer,” Journal of Propulsion and Power, Vol. 2, No. 6, pp.528-533, 1986.
[15] Ortman, J. and Lefebvre, A.H., “Fuel Distributions from Pressure-Swirl Atomizers,” Journal of Propulsion and Power, Vol. 1, No. 1, pp.11-15, 1985.
[16] De Corso, S. M., and Kemeny, G. A., “Effect of Ambient and Fuel Pressure on Nozzle Spray Angle,” ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp. 607-615, 1957.
[17] Dumouchel, C., Bloor, M. I. G., Dombrowski, N., Ingham, D. B., and Ledoux, M., “Viscous Flow in a Swirl Atomizer,” Chemical Engineering Science, Vol. 48, No. 1, pp.81-87, 1993.
[18] Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., “Prediction of Mean Drop Size of Fuel Sprays From Swirl Spray Atomizer,” Proceedings of 2nd International Conference on Liquid Atomization and Spray System, pp.99-106, 1982.
[19] Simmons, H. C., and Harding, C. F., “Some Effect on Using Water as a Test Fluid in Fuel Nozzle Spray Analysis,” American Society of Mechanical Engineers , pp.80-90, 1980.
[20] Simmons, H. C., “The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzle of Different Types,” American Society of Mechanical Engineers, Vol. 102, pp.646-652, 1980.
[21] Kennedy, J. B., “High Weber Number SMD Correlations for Pressure Atomizers,” American Society of Mechanical Engineers, Vol. 108, pp.191-195, 1986.
[22] Wang, X. F., and Lefebvre, A. H., “Mean Drop Sizes from Pressure-Swirl Nozzles,” Journal of Propulsion and Power, Vol. 3, No. 1, pp.11-18, 1987.
[23] De Corso, S. M., “Effect of Ambient and Fuel Pressure on Spray Drop Size,” American Society of Mechanical Engineers, Vol. 82, pp.10, 1960.
[24] Taylor, G. I., “The Boundary Layer in the Converging Nozzle of a Swirl Atomizer,” Quarterly Journal of Mechanics and Applied Mathematics, Vol. 3, pp.129-139, 1948
[25] Rizk, N. K., and Lefebvre, A. H., “Prediction of Velocity Coefficient and Spray Cone Angle for Simplex Swirl Atomizer,” Proceeding of 3rd International Conference on Liquid Atomization and Spray System, pp.III/2/1-16, 1985.
[26] Elkotb, M. M., Rafat, N. M., and Hanna, M. A., “The Influence of Swirl Atomizer Geometry on the Atomization Performance,” Proceedings of 1st International Conference on Liquid Atomization and Spray System, pp.109-115, 1978.
[27] Abou-Ellail, M. M. M., Elkotb, M. M., Rafat, N. M., “Effect of Fuel Pressure, Air Pressure and Air Temperature on Droplet Size Distribution in Hollow-Cone kerosene Sprays,” Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp.85-92, 1978.
[28] Chen, S. K., Lefebvre, A. H., and Rollbuhler, J., “Factors Influencing the Effective Spray Cone Angle of Pressure Swirl Atomizers,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp.97-103, 1992.
[29] Zhang, F. R., Terashima, H., and Tokuoka, N., “The Spray Structure from Swirl Atomizer (2nd Report, Correlation between Characteristics of Swirl Atomizers and Structure of Spray),”B Hen/Transactions of Japan Society of Mechanical Engineers, Part B, Vol. 60, pp.681-686, 1994.
[30] Lacava, P. T. Demétrio Bastos-Netto, Amílcar Porto Pimenta, “Design Procedure and Experimental Evaluation of Pressure-Swirl Atomizers,” 24th International Congress of the Aeronautical Sciences, 2004.
[31] 林富祈, “壓力式渦漩霧化器噴霧錐角控制之研究,” 國立成功大學航太所碩士論文, 1997.
[32] 郭志霄, “單孔渦漩霧化器之設計,” 國立成功大學機械工程所碩士論文, 1994.
[33] 林嘉宏, “渦漩霧化器之設計製造及模擬分析,” 國立成功大學航太所碩士論文, 1996.
[34] 黃澤民, “直接噴油啟動之微型渦輪引擎啟動,” 國立成功大學航太所碩士論文, 2010.
[35] 陳正業, “壓力式渦旋霧化器粒徑分佈集中化技術研究,” 國立成功大學航太所碩士論文, 2001.