| 研究生: |
鄭家蓉 Cheng, Chia-Jung |
|---|---|
| 論文名稱: |
透明質酸影響人類胎盤間葉幹細胞分化成內皮細胞之作用 The effect of hyaluronan on endothelial differentiation of placenta-derived mesenchymal stem cells |
| 指導教授: |
黃玲惠
Huang, Lynn L.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 胎盤間葉幹細胞 、內皮細胞 、透明質酸 |
| 外文關鍵詞: | PDMSC, EC, HA |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傷口癒合的過程中,血管必須再生以輸送修復組織的養分來源和廢物代謝。欲將組織工程應用於傷口敷料,必須慎選血管的細胞來源與微環境成份以協助血管新生。本實驗萃取胎盤絨毛組織之間葉幹細胞作為內皮細胞分化的幹細胞來源,在分化前胎盤間葉幹細胞無表現KDR、VE-cadherin、CD31與vWF等內皮細胞標幟,經由含促進血管新生因子之培養液EGM-2或是基礎培養液DMEM-10% FBS培養至21天後,內皮標幟基因量均有上升的現象,並且同時觀察到內皮標幟蛋白的表現。在連續分化32天的試驗中,內皮標幟基因在14天至18天開始增加表現量,於第21天達到最高的基因量;同時結果顯示第七代幹細胞較第五代提早表現內皮基因,說明第七代細胞有較趨近於內皮細胞的特性。以低分子量4300 Da或高分子量1500 kDa透明質酸的各種濃度(10 μg/mL、100 μg/mL、1000 μg/mL)條件添加於DMEM-10% FBS中培養間葉幹細胞,觀察到4300 Da 10 μg/mL與1500 kDa 10/100/1000 μg/mL可促使部份內皮細胞標幟表現提升。根據以上結果,得知胎盤間葉幹細胞經由培養21天可以被誘導走向內皮細胞分化,並且添加特定條件之透明質酸可以促進幹細胞表現內皮細胞標幟,顯示這些透明質酸在內皮細胞分化中具有輔助的特性。
During wound healing, angiogenesis plays a key role in regeneration of new blood vessels for delivery of oxygen and nutrients to repairing site. How to choose an excellent cell source and components of microenvironment for angiogenesis is important in tissue engineering. We investigated the endothelial differentiation of placenta-derived mesenchymal stem cells (PDMSCs), a population of endothelial marker KDR/VE-cadherin/CD31/vWF-negative cells. PDMSCs, cultured in EGM-2 medium containing angiogenic growth factors or basal medium DMEM-10% FBS for 21 days, showed high expressions both in gene and protein levels of endothelial markers. The time course of endothelial differentiation from day 7 to day 32 for PDMSCs showed increased levels of mRNA encoding KDR, VE-cadherin, CD31, vWF and VEGF at day 14 or day 18, and reached the highest level at day 21. P7 expressed high level of mRNA earlier than P5 PDMSCs, indicating P7 PDMSCs had more potential of differentiation into endothelial cells (ECs). Addition of low molecular weight (4300 Da) or high molecular weight (1500 kDa) hyaluronan (HA) with concentration 10 μg/mL, 100 μg/mL and 1000 μg/mL to DMEM-10% FBS medium showed that expression of some endothelial markers were enhanced by 4300 Da 10 μg/mL and 1500 kDa 10/100/1000 μg/mL HA. In conclusion, these results suggest that PDMSCs cultured in DMEM-10% FBS medium for 21 days can be induced into endothelial differentiation, and HA promotes gene and protein expression of endothelial markers, demonstrating HA has angiogenic potential.
1. Jain, R.K., Molecular regulation of vessel maturation. Nat Med, 2003. 9(6): p. 685-93.
2. Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000. 6(4): p. 389-95.
3. Ema, M. and J. Rossant, Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med, 2003. 13(6): p. 254-9.
4. Hisatsune, H., ed. Potential of ES cell differentiation culture for vascular biology. Essentials of stem cell biology. Vol. chapter 30. 2006.
5. Hristov, M. and C. Weber, Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med, 2004. 8(4): p. 498-508.
6. Yue, W.M., et al., Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev, 2008. 17(4): p. 785-93.
7. Servold, S.A., Growth factor impact on wound healing. Clin Podiatr Med Surg, 1991. 8(4): p. 937-53.
8. Arnold, F. and D.C. West, Angiogenesis in wound healing. Pharmacol Ther, 1991. 52(3): p. 407-22.
9. Tonnesen, M.G., X. Feng, and R.A. Clark, Angiogenesis in wound healing. J Investig Dermatol Symp Proc, 2000. 5(1): p. 40-6.
10. Kurita, Y., et al., Immunohistochemical localization of basic fibroblast growth factor in wound healing sites of mouse skin. Arch Dermatol Res, 1992. 284(4): p. 193-7.
11. Yang, G.P., et al., From scarless fetal wounds to keloids: molecular studies in wound healing. Wound Repair Regen, 2003. 11(6): p. 411-8.
12. Li, J., Y.P. Zhang, and R.S. Kirsner, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech, 2003. 60(1): p. 107-14.
13. Augustin, H.G., Antiangiogenic tumour therapy: will it work? Trends Pharmacol Sci, 1998. 19(6): p. 216-22.
14. Le Blanc, K. and M. Pittenger, Mesenchymal stem cells: progress toward promise. Cytotherapy, 2005. 7(1): p. 36-45.
15. Tocci, A. and L. Forte, Mesenchymal stem cell: use and perspectives. Hematol J, 2003. 4(2): p. 92-6.
16. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Exp Biol Med (Maywood), 2001. 226(6): p. 507-20.
17. Moon, M.H., et al., Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem, 2006. 17(5-6): p. 279-90.
18. Heydarkhan-Hagvall, S., et al., Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008. 187(4): p. 263-74.
19. Liu, J.W., et al., Characterization of endothelial-like cells derived from human mesenchymal stem cells. J Thromb Haemost, 2007. 5(4): p. 826-34.
20. Oswald, J., et al., Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 2004. 22(3): p. 377-84.
21. Alviano, F., et al., Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol, 2007. 7: p. 11.
22. Wu, C.C., et al., Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech, 2008. 41(4): p. 813-21.
23. Lee, M.Y., et al., Angiogenesis in differentiated placental multipotent mesenchymal stromal cells is dependent on integrin alpha5beta1. PLoS One, 2009. 4(10): p. e6913.
24. Matikainen, T. and J. Laine, Placenta--an alternative source of stem cells. Toxicol Appl Pharmacol, 2005. 207(2 Suppl): p. 544-9.
25. Fauza, D., Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol, 2004. 18(6): p. 877-91.
26. von Drygalski, A. and J.W. Adamson, Placental/umbilical cord blood (PCB) stem cells for transplantation: early clinical outcomes and the status of ex vivo expansion strategies. Keio J Med, 2000. 49(4): p. 141-51.
27. Li, C.D., et al., Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta, 2005.
28. Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
29. In 't Anker, P.S., et al., Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004. 22(7): p. 1338-45.
30. Igura, K., et al., Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy, 2004. 6(6): p. 543-53.
31. Sattar, A., et al., Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J Invest Dermatol, 1994. 103(4): p. 576-9.
32. Spicer, A.P. and J.Y. Tien, Hyaluronan and morphogenesis. Birth Defects Res C Embryo Today, 2004. 72(1): p. 89-108.
33. Toole, B.P., Hyaluronan in morphogenesis. Semin Cell Dev Biol, 2001. 12(2): p. 79-87.
34. Castellucci, M., et al., Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update, 2000. 6(5): p. 485-94.
35. Chen, W.Y. and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair Regen, 1999. 7(2): p. 79-89.
36. West, D.C., et al., Angiogenesis induced by degradation products of hyaluronic acid. Science, 1985. 228(4705): p. 1324-6.
37. West, D.C. and S. Kumar, The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res, 1989. 183(1): p. 179-96.
38. Slevin, M., et al., Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol, 2007. 26(1): p. 58-68.
39. Yang, B., et al., Identification of a novel heparin binding domain in RHAMM and evidence that it modifies HA mediated locomotion of ras-transformed cells. J Cell Biochem, 1994. 56(4): p. 455-68.
40. Gao, F., et al., Preparation and characterization of hyaluronan oligosaccharides for angiogenesis study. J Biomed Mater Res B Appl Biomater, 2006. 78(2): p. 385-92.
41. Rooney, P., et al., Angiogenic oligosaccharides of hyaluronan enhance the production of collagens by endothelial cells. J Cell Sci, 1993. 105 ( Pt 1): p. 213-8.
42. Angele, P., et al., Characterization of esterified hyaluronan-gelatin polymer composites suitable for chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A, 2008.
43. Liu, C.M., et al., Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res, 2009. 336(3): p. 465-75.
44. Liu, C.M., et al., Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. Cell Tissue Res, 2008. 334(3): p. 435-43.
45. Chen, P.Y., L.L. Huang, and H.J. Hsieh, Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochem Biophys Res Commun, 2007. 360(1): p. 1-6.
46. Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11298-303.
47. Ventura, C., et al., Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem, 2007. 282(19): p. 14243-52.
48. Murphy, J.F., et al., Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. FASEB J, 2005. 19(3): p. 446-8.
49. Ibrahim, S. and A. Ramamurthi, Hyaluronic acid cues for functional endothelialization of vascular constructs. J Tissue Eng Regen Med, 2008. 2(1): p. 22-32.
50. Pardue, E.L., S. Ibrahim, and A. Ramamurthi, Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis, 2008. 4(4): p. 203-14.
51. Parolini, O., et al., Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 2008. 26(2): p. 300-11.
校內:2015-09-01公開