| 研究生: |
賴浚銘 Lai, Jun-Ming |
|---|---|
| 論文名稱: |
含四級銨鹽及亞磷酸官能基之共聚高分子應用於鈦金屬表面改質:合成及血液相容性與抗菌性之探討 Study of modification of titanium using synthesized copolymers with phosphonic acid and trimethylammonium functionality |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 鈦金屬 、亞磷酸 、四級銨鹽 、抗菌 、血液相容性 |
| 外文關鍵詞: | titanium, phosphonic acid, ammonium, antibacterial, hemocompatibility |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦金屬被廣泛應用於生醫材料上,但在臨床的使用中由於與血液接觸時的血液相容性不佳,而容易產生血栓,並且當使用在人體植入物時,假使植入物 表面受到細菌感染則會導致病患需要接受更麻煩的治療過程,因此本研究的目的將要改質鈦金屬表面來改善這些問題。改善方法為將具有雙電性及表面錨定能力之高分子修飾於鈦金屬表面,高分子為一端含有與鈦金屬表面鍵結能力的亞磷酸官能基的6-acryloyloxy hexyl phosphonic acid(6-AcrHPA),另一端含有的三級胺官能基的dimethylaminoethyl methacrylate(DMAEMA),接著再反應成具抗菌能力的四級銨鹽,並利用原子轉移自由基聚合與自由基聚合的方式聚合出高分子,藉由四級銨鹽及部分亞磷酸官能基形成兩性聚電解質,並且透過改變亞磷酸官能基單體及四級銨鹽之單體的進料比來探討修飾後表面的特性。
合成完高分子之後以NMR先做結構的判定,接著將製備好的高分子溶液進行表面滴塗佈法塗佈於鈦金屬表面,並且加熱產生鍵結反應。改質完成的試片以XPS進行表面特性分析,接著進行血小板的吸附實驗討論表面血液相容性,也利用抗菌實驗探討表面的抗菌特性。
經過各項鑑定後,我們成功合成出共聚高分子,並且成功的改質在鈦金屬表面上。共聚高分子中的亞磷酸根確實與鈦金屬表面產生共價鍵結;改質後發現表面的血液相容性在QP3N7達到不錯的效果;抗菌的實驗上,四級化後的表面都具有抗菌之特性。
Titanium and its alloys are widely used in medical applications. However, owing to poor hemocompatibility in clinical use and bacterial infection complications as implants, applications have been limited. Thus, the objective of this investigation is to develop a novel surface modification method to improve hemocompatibility and prevent implant infection.
In this work, novel multifunctional copolymers with zwitterionic property, contributed by dimethylaminoethyl methacrylate (DMAEMA) as tertiary amine, and surface-anchor groups, which are composed of 6-acryloyloxy hexyl phosphonic acids , were synthesized. Then, the tertiary amines in the polymers were quaternized to become ammoniums.
The polymers were polymerized by atom transfer radical polymerization and free radical polymerization. The phosphonic acids would form covalent bonds with titanium surfaces, and the ammoniums would exhibit antibacterial properties. The synthesized polymers contain anionic and cationic groups in different monomer units, and could thus mimic phosphorylcholine and possess better hemocompatibility. We will compare the surface characteristics of copolymers of different composition ratios of 6-AcrHPA and DMAEMA. According to subsequent biological analyses, the most platelet-compatible titanium surface was observed to be that coated with the copolymer containing 30% of 6-AcrHPA, and all the quaternized surfaces exhibited antibacterial properties.
[1] Vanderleyden E, Mullens S, Luyten J, Dubruel P. Implantable (bio) polymer coated titanium scaffolds: a review. Current pharmaceutical design. 2012;18:2576-90.
[2] Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192-9.
[3] Thurston TE, Andrades P, Phillips RA, Ray PD, Grant III JH. Safety Profile of Wire Osteosynthesis in Craniosynostosis Surgery. Journal of Craniofacial Surgery. 2009;20:1154-8.
[4] Klos K, Sauer S, Hoffmeier K, Gras F, Fröber R, Hofmann GO, et al. Biomechanical evaluation of plate osteosynthesis of distal fibula fractures with biodegradable devices. Foot & ankle international. 2009;30:243-51.
[5] Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Progress in Materials Science. 2013;58:261-326.
[6] Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in Materials Science. 2009;54:397-425.
[7] Guillemot F, Prima F, Bareille R, Gordin D, Gloriant T, Porté-Durrieu M, et al. Design of new titanium alloys for orthopaedic applications. Medical and Biological Engineering and Computing. 2004;42:137-41.
[8] Mour M, Das D, Winkler T, Hoenig E, Mielke G, Morlock MM, et al. Advances in porous biomaterials for dental and orthopaedic applications. Materials. 2010;3:2947-74.
[9] Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. Journal of the Royal Society Interface. 2008;5:1137-58.
[10] Wen C, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. Journal of Materials Science: Materials in Medicine. 2002;13:397-401.
[11] Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports. 2004;47:49-121.
[12] Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European Spine Journal. 2001;10:S96-S101.
[13] Ehrenfest DMD, Coelho PG, Kang B-S, Sul Y-T, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in biotechnology. 2010;28:198-206.
[14] Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental materials. 2007;23:844-54.
[15] Moe KS, Weisman RA. Resorbable fixation in facial plastic and head and neck reconstructive surgery: an initial report on polylactic acid implants. The Laryngoscope. 2001;111:1697-701.
[16] Huang H-H, Chiu Y-H, Lee T-H, Wu S-C, Yang H-W, Su K-H, et al. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24:3585-92.
[17] Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications: Springer Science & Business Media; 2012.
[18] Phillips P, Sampson E, Yang Q, Antonelli P, Progulske-Fox A, Schultz G. Bacterial biofilms in wounds. Wound Healing Southern Africa. 2009;1:10-2.
[19] Fux C, Costerton J, Stewart P, Stoodley P. Survival strategies of infectious biofilms. Trends in microbiology. 2005;13:34-40.
[20] Davies D. Understanding biofilm resistance to antibacterial agents. Nature reviews Drug discovery. 2003;2:114-22.
[21] Horswill AR, Stoodley P, Stewart PS, Parsek MR. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Analytical and bioanalytical chemistry. 2007;387:371-80.
[22] Flemming H-C, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. Journal of bacteriology. 2007;189:7945-7.
[23] Wang H, Yin T, Ge S, Zhang Q, Dong Q, Lei D, et al. Biofunctionalization of titanium surface with multilayer films modified by heparin‐VEGF‐fibronectin complex to improve endothelial cell proliferation and blood compatibility. Journal of Biomedical Materials Research Part A. 2013;101:413-20.
[24] Courtney J, Lamba N, Sundaram S, Forbes C. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737-44.
[25] Carpenter AW, Schoenfisch MH. Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews. 2012;41:3742-52.
[26] Pujari SP, Scheres L, Marcelis A, Zuilhof H. Covalent surface modification of oxide surfaces. Angewandte Chemie International Edition. 2014;53:6322-56.
[27] Jones M, McColl I, Grant D, Parker K, Parker T. Haemocompatibility of DLC and TiC–TiN interlayers on titanium. Diamond and Related Materials. 1999;8:457-62.
[28] Jones M, McColl I, Grant D, Parker K, Parker T. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. Journal of biomedical materials research. 2000;52:413-21.
[29] Li G, Yang P, Qin W, Maitz MF, Zhou S, Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials. 2011;32:4691-703.
[30] Yang Z, Wang J, Luo R, Maitz MF, Jing F, Sun H, et al. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. 2010;31:2072-83.
[31] Sperling C, Houska M, Brynda E, Streller U, Werner C. In vitro hemocompatibility of albumin–heparin multilayer coatings on polyethersulfone prepared by the layer‐by‐layer technique. Journal of Biomedical Materials Research Part A. 2006;76:681-9.
[32] Pan C-J, Hou Y-H, Zhang B-B, Dong Y-X, Ding H-Y. Blood compatibility and interaction with endothelial cells of titanium modified by sequential immobilization of poly (ethylene glycol) and heparin. Journal of Materials Chemistry B. 2014;2:892-902.
[33] Tsai W-B, Chen Y-H, Chien H-W. Collaborative cell-resistant properties of polyelectrolyte multilayer films and surface PEGylation on reducing cell adhesion to cytophilic surfaces. Journal of Biomaterials Science, Polymer Edition. 2009;20:1611-28.
[34] Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z, et al. Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. Journal of Membrane Science. 2008;319:271-8.
[35] Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D. Poly (2‐ethyl‐2‐oxazoline) as Alternative for the Stealth Polymer Poly (ethylene glycol): Comparison of in vitro Cytotoxicity and Hemocompatibility. Macromolecular bioscience. 2012;12:986-98.
[36] Plopper G. Principles of Cell Biology. Jones & Bartlett Learning,. 2013.
[37] Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072-7.
[38] Ye SH, Johnson CA, Woolley JR, Snyder TA, Gamble LJ, Wagner WR. Covalent surface modification of a titanium alloy with a phosphorylcholine‐containing copolymer for reduced thrombogenicity in cardiovascular devices. Journal of Biomedical Materials Research Part A. 2009;91:18-28.
[39] Ye S-H, Johnson CA, Woolley JR, Murata H, Gamble LJ, Ishihara K, et al. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces. 2010;79:357-64.
[40] Liu Q, Ding J, Mante FK, Wunder SL, Baran GR. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials. 2002;23:3103-11.
[41] Martin HJ, Schulz KH, Bumgardner JD, Walters KB. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan. Applied Surface Science. 2008;254:4599-605.
[42] Matinlinna JP, Özcan M, Lassila LV, Vallittu PK. The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris (3-trimethoxysilylpropyl) isocyanurate on the shear bond strength of composite resin to titanium metal. Dental Materials. 2004;20:804-13.
[43] Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir. 2006;22:8197-204.
[44] Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, et al. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir. 2002;18:2582-9.
[45] Viornery C, Guenther HL, Aronsson BO, Péchy P, Descouts P, Grätzel M. Osteoblast culture on polished titanium disks modified with phosphonic acids. Journal of biomedical materials research. 2002;62:149-55.
[46] Gawalt E, Avaltroni M, Danahy M, Silverman B, Hanson E, Midwood K, et al. Bonding organics to Ti alloys: facilitating human osteoblast attachment and spreading on surgical implant materials corrections. Langmuir. 2003;19:7147-.
[47] Gawalt ES, Avaltroni MJ, Koch N, Schwartz J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir. 2001;17:5736-8.
[48] Schwartz J, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Schwarzbauer JE, et al. Cell attachment and spreading on metal implant materials. Materials Science and Engineering: C. 2003;23:395-400.
[49] Lu G, Bernasek SL, Schwartz J. Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science. 2000;458:80-90.
[50] Zoulalian V, Monge S, Zürcher S, Textor M, Robin J-J, Tosatti S. Functionalization of titanium oxide surfaces by means of poly (alkyl-phosphonates). The Journal of Physical Chemistry B. 2006;110:25603-5.
[51] Marcinko S, Fadeev AY. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir. 2004;20:2270-3.
[52] Zhang J, Hoogboom J, Kouwer PH, Rowan AE, Rasing T. Uniform N-(2-Aminoethyl)(3-aminopropyl) trimethoxysilane Monolayer Growth in Water. The Journal of Physical Chemistry C. 2008;112:20105-8.
[53] Mutin PH, Guerrero G, Vioux A. Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry. 2005;15:3761-8.
[54] Goldberg S, Sposito G. A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Science Society of America Journal. 1984;48:772-8.
[55] Hotchkiss PJ, Jones SC, Paniagua SA, Sharma A, Kippelen B, Armstrong NR, et al. The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Accounts of chemical research. 2011;45:337-46.
[56] Guerrero G, Mutin P, Vioux A. Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chemistry of Materials. 2001;13:4367-73.
[57] Stumm W. The inner-sphere surface complex: A key to understanding surface reactivity. Advances in chemistry series. 1995;244:1-.
[58] Muljadi D, Posner A, Quirk J. The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Journal of Soil Science. 1966;17:212-28.
[59] Rajan S. Adsorption of divalent phosphate on hydrous aluminium oxide. 1975.
[60] Gilbert P, Moore L. Cationic antiseptics: diversity of action under a common epithet. Journal of applied microbiology. 2005;99:703-15.
[61] Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870-9.
[62] Simoncic B, Tomsic B. Structures of novel antimicrobial agents for textiles-a review. Textile Research Journal. 2010.
[63] Ikeda T, Yamaguchi H, Tazuke S. New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrobial agents and chemotherapy. 1984;26:139-44.
[64] Matsugi T, Saito J, Kawahara N, Matsuo S, Kaneko H, Kashiwa N, et al. Surface modification of polypropylene molded sheets by means of surface-initiated ATRP of methacrylates. Polymer journal. 2009;41:547-54.
[65] Yang WJ, Cai T, Neoh K-G, Kang E-T, Teo SL-M, Rittschof D. Barnacle cement as surface anchor for “clicking” of antifouling and antimicrobial polymer brushes on stainless steel. Biomacromolecules. 2013;14:2041-51.
[66] Minko S. Grafting on solid surfaces:“Grafting to” and “grafting from” methods. Polymer surfaces and interfaces: Springer; 2008. p. 215-34.
[67] Henze M, Mädge D, Prucker O, Rühe Jr. “Grafting Through”: Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules. 2014;47:2929-37.
[68] Stevens N, Priest C, Sedev R, Ralston J. Wettability of photoresponsive titanium dioxide surfaces. Langmuir. 2003;19:3272-5.
[69] Kerber S, Bruckner J, Wozniak K, Seal S, Hardcastle S, Barr T. The nature of hydrogen in x‐ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. Journal of Vacuum Science & Technology A. 1996;14:1314-20.
[70] Reinholdt M, Ilie A, Roualdès S, Frugier J, Schieda M, Coutanceau C, et al. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells. Membranes. 2012;2:529-52.
[71] Suh TS, Joo CK, Kim YC, Lee MS, Lee HK, Choe BY, et al. Surface modification of polymethyl methacrylate intraocular lenses with the mixture of acrylic acid and acrylamide via plasma‐induced graft copolymerization. Journal of applied polymer science. 2002;85:2361-6.
[72] Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir. 2001;17:2664-9.
[73] Qiu J, Zhang J, Chen J, Peng J, Xu L, Zhai M, et al. Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications. Journal of Membrane Science. 2009;334:9-15.
[74] Wu S, Zhu X, Yang J, Nie J. A facile photopolymerization method for fabrication of pH and light dual reversible stimuli-responsive surfaces. Chemical Communications. 2015;51:5649-51.
[75] Xu LQ, Li NN, Chen JC, Fu GD, Kang E-T. Quaternized poly (2-(dimethylamino) ethyl methacrylate)-grafted agarose copolymers for multipurpose antibacterial applications. RSC Advances. 2015;5:61742-51.
[76] Deng S, Zheng Y, Xu F, Wang B, Huang J, Yu G. Highly efficient sorption of perfluorooctane sulfonate and perfluorooctanoate on a quaternized cotton prepared by atom transfer radical polymerization. Chemical engineering journal. 2012;193:154-60.
[77] Schuetzle D, Carter R, Shyu J, Dickie R, Holubka J, McIntyre N. The chemical interaction of organic materials with metal substrates. Part I: ESCA studies of organic phosphate films on steel. Applied spectroscopy. 1986;40:641-9.
校內:2021-08-24公開