| 研究生: |
蘇季鴻 Su, Chi-Hung |
|---|---|
| 論文名稱: |
單晶太陽能矽晶片焊接殘留應力與翹曲分析 Analysis of residual stress and warpage induced by soldering in monocrystalline silicon wafers |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 太陽能矽晶片 、焊接 、有限元素法 、翹曲 、殘留應力 |
| 外文關鍵詞: | solar cell, soldering process, finite element, warpage, residual stress |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,太陽能產業的迅速發展,導致半導體材料的日益短缺,基於成本考量,太陽能矽晶片朝大尺寸薄形化發展,然而晶片為求導電性與能量的輸出,必須透過焊接製程該項程序,往往導致太陽能矽晶片翹曲變形大幅增加,不利於日後晶片之封裝製程,甚至造成晶片的破損、縮短太陽能晶片的使用年限,因此,如何減少晶片翹曲變形及降低焊接製程晶片殘留應力將是太陽能矽晶片製程產業的重要議題。
本文依單晶太陽能矽晶片焊接製程進行實驗量測,並採用ANSYS有限元素數值模擬工具分析焊接製程降溫過程中單晶太陽能矽晶片翹曲變形行為,最後將數值模擬結果與實驗量測數據加以分析比對,確保數值模擬分析流程建立之正確性,接著再利用本文所建立之數值模擬分析模式,考慮不同晶片之幾何參數對單晶太陽能矽晶片焊接製程結構行為的影響 ; 並更進一步探討不同幾何形狀參數下矽晶片裂縫對應力行為及應力強度因子的變化情形,最後根據實驗與數值模擬所得的結果作出結論與建議,以供後續太陽能矽晶片相關焊接製程行為研究之參考。
In recent years, PV manufacturing develops rapidly, and as the result, it gradually leads to the decreasing of semiconductor material. Solar cell as semiconductor material undergoes vast reduction in cell thicknesses, yet greater dimension as the consequence of costs considerations is inevitable. Solar cell also requires the electric conductivity and power output, which can be achieved through the soldering process. However, the process usually lead to substantial increase of warpage in silicon wafer, which is not good for the packing process of wafer itself and may seriously damage and reduce wafer life use. Therefore, how to reduce warpage and residual stress in wafer soldering process will be an important issue in the future.
In this paper, both finite element simulation from ANSYS and experimental measurement were conducted to analyze the behavior of the soldering process in monocrystalline silicon wafers warpage. Comparison between both methods was carried out to verify the accuracy of numerical simulation analysis process. The results of verified numerical simulation method were utilized to assess different geometric parameters of monocrystalline silicon wafers, which affect it structural behavior in the soldering process. Furthermore, investigation of the crack variations of silicon wafers under the specified different geometry parameters regarding the stress behavior and intensity factor was also examined in this research. Eventually, in accordance with the results from experiment and numerical simulation, conclusions and recommendations can be made as future references concerning silicon wafer soldering process.
參考文獻
ANSYS (2004). ANSYS User’s Manual Revision 13.0, ANSYS, Inc., Canonsburg, Pennsylvania.
Barsoum, R. S. (1976). On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics. International Journal for Numerical Methods in Engineering, 10 (1). 25-37.
Borrero-Lopez, O., Vodenitcharova, T., Hoffman, M., & Leo, A.J. (2009). Fracture strength of polycrystalline silicon wafers for the photovoltaic industry. Journal of the American Ceramic Society, 92 (11). 2713-2717.
Eishen, J. W., Chung, C. & Kim, J. (1990). Realistic Modeling of Edge-Effect Stresses in Bi-Material Elements. ASME Journal of Electronic Packaging, 112 (1).
Gabor, A. M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., et al. (2006, September). Soldering Induced Damage to Thin Si Solar Cells and Detection of Cracked Cells in Modules. Proceedings of the 21nd European Photovoltaic Solar Energy Cenference, Dresden.
Henshell, R. D. & Shaw, K. G. (1975). Crack tip Finite Elements are Unnecessary. International Journal for Numerical Methods in Engineering, 9 (3). 495-507.
Huster, F. (2005, June). Alumnium-Back Surface Field: Bow Investigation and Elimination. Proceedings of the 20nd European Photovoltaic Solar Energy Cenference, Barcelona.
Irwin, G. R. (1957). Analysis of Stresses and Strains Near The End of A Crack Traveling A Plate. Transaction of ASME Journal of Applied Mechanics, 24 (3). 361-364.
Khadilkar, C., Kim S., Shaikh, A., Sridharan, S., & Pham, T. (2005). Characterization of Al Back Contact in a Silicon Solar Cell. Proceedings of the International PVSEC-15, Shanghai, China.
Kim, S., Shaikh, A., Sridharan, S., Khadilkar, C., & Pham, T. (2004). Aluminum Pastes for Thin Wafers. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France.
Kohn, C., Faber, T., Kübler, R., Beinert, J., Kleer, G., Clement, F., et al. (2007, September). Analyses of Warpage Effects Induced by Passivation and Electrode Coatings in Silicon Solar Cells. Proceedings of the 22nd European Photovoltaic Solar Energy Cenference and Exhibition, Milan, Italy.
Micciche, M., Brad, D., and Shawn, S. (2007). Understanding the Causes Cell Breakage During the Cell Interconnecting Process-Part II. Proceedings of the 22nd European Photovoltaic Solar Energy Cenference, Milan, Italy.
Nieland, S., Baehr, M., Boettger, A., Ostmann, A. & Reichl, H., (2007). Advantages of Microelectronic Packaging for Low Temperature Lead Free Soldering of Thin Solar Cells. 22th European Photovoltaic Solar Energy Conference, Milan, Italy.
Pan, T. Y. & Pao, Y. H. (1990). Deformation in Multilayer Stacked Assemblies. ASME Journal of Electronic Packaging, 112. 30-34.
Pingel, S., Zemen, Y., Frank, O., Geipel, T. & Berghold, J. (2009). Mechanical Stability of Solar Cells Within Solar Panels. Proceedings of the 24nd European Photovoltaic Solar Energy Cenference and Exhibition, Dresden, Germany.
Rupnowski, P., & Sopori, B. (2009). Strength of Silicon Wafers: Fracture Mechanics Approach. International Journal of Fracture, 155 (1). 67-74.
Suhir, E. (1986). Stresses in Bi-Metal Thermostats. ASME Journal of Applied Mechanics, 53. 657-660.
Suhir, E. (2006). Interfacial Thermal Stresses in a Bi-Material Assembly with a Low-Yield-Stress Bonding Layer. Modeling and Simulation in Materials Science and Engineering, 14. 1421-1432.
Timoshenko, S. (1925). Analysis of Bi-Metal Thermostats. Journal of the Optical Society of America, 11 (3). 233-255.
Wu, Chang Yang., Ay H., Yang Jyun Ciou. (2011), A Study of Optimal Manufacturing Parameters With Lead-Free Solder on the C-Si Photovoltaic Cells by Using Hot-Air Tabbing. Paper presented at National Kaohsiung University of Applied Sciences, Taiwan, R.O.C.
「2010年能源產業技術白皮書」,經濟部能源局。
「2011年太陽光電市場與產業技術發展年鑑」,光電科技工業協進會。
劉心怡,洪雅慧,何宗漢,2010,「銀膠種類及厚度對構裝後晶片可靠度的影響」,工程科技與教育學刊,第七卷第四期,p.546-559。
戴寶通教授,鄭晃忠教授,2008,「太陽能電池技術手冊」。
校內:2017-07-10公開