簡易檢索 / 詳目顯示

研究生: 溫慧怡
Wen, Hui-I
論文名稱: 高長寬比氧化鋅奈米柱之生成-氫氣後處理效應之研究
Aspect-ratio enhancement of the ZnO nanorods using hydrogen post-treatment
指導教授: 吳季珍
Wu, Jih-Jen
劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 66
中文關鍵詞: 一維奈米材料氧化鋅
外文關鍵詞: 1-D nanomatertials, ZnO
相關次數: 點閱:53下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Formation of the ZnO film and ZnO nanorod has been achieved using a simple CVD method at low temperatures in this study. It is concluded that both growth temperature and reacting gas concentrations dominated the formation of ZnO nanorods. PL spectra indicate ZnO nanorods exhibit a strong UV emission at around 386 nm under room temperature. The quality of ZnO nanorod is better than ZnO film due to the absence of the blue and green band emissions. XRD spectra indicate that both ZnO film and ZnO nanorods are preferentially oriented in the c-axis direction. Moreover, epitaxial growth of ZnO films on p-GaN film substrates was demonstrated in this work.
    Aspect-ratio enhancement of the as-grown ZnO nanorods is achieved using H2 post- treatment. ZnO nanorods were found to re-deposit in an environment containing H2 and the etching products. Diameter control of the ZnO nanorods is achieved by adjusting the post-treatment conditions. TEM and PL analyses examine that the re-deposited ZnO nanorods possess a single-crystal wurtzite structure with rather good quality. Optical properties of the individual ZnO nanorods with various diameters have been investigated using cathodoluminescence (CL).

    Abstract I Catalogue V Figure catalogue VIII Chapter 1 Introduction 1 1-1 Nanomaterials and nanotechnology 1 1-2 One-dimensional nanomaterials 3 1-3 ZnO 6 1-4 Motivation 7 Chapter 2 Theory foundation 8 2-1 Chemical Vapor Deposition (CVD) 8 2-2 Fabrication of one-dimensional nanostructures 9 2-2.1 Vapor Liquid Solid (VLS) methods 9 2-2.2 Solution- Liquid Solid (SLS) methods 10 2-2.3 Template-Directed Synthesis-channels in porous materials 12 2-2.4 Templating Against Self-Assembled Molecular Structures 13 2-3 One-dimensional ZnO nanostructures 14 2-4 Optical properties of ZnO film and nanostructures 17 Chapter 3 Experimental System 21 3-1 Process System 21 3-1.1 Thermal Chemical Vapor Deposition 21 3-2 Analyses Systems 21 3-2.1 Scanning Electron Microscopy (SEM) 21 3-2.2 X-ray Powder Diffraction (XRD) 22 3-2.3 Ultrahigh-Resolution Analytical Electron Microscopy (UR-AEM) 22 3-2.4 Photoluminescence (PL) 22 3-2.5 Cathodoluminescence (CL) 23 3-3 Experiment 24 3-3.1 The deposition of ZnO polycrystalline films and nanorods on Si(001) 24 3-3.2 Heteroepitaxy of ZnO on p-GaN/(0001) a-Al2O3 24 3-3.3 Chemical etching of as-grown ZnO nanorods 25 3-3.4 Size-dependent Cathodoluminescence of ZnO nanorods 25 Chapter 4 Results and Discussion 27 4-1 Deposition of ZnO polycrystalline films and ZnO nanorods 27 4-1.1 Growth of ZnO film and ZnO nanorods on Si (100) 27 4-1.2 Structures and optical properties of ZnO films and ZnO nanorods 31 4-1.3 Mechanism of ZnO nanorods growth 31 4-1.4 Heteroepitaxial growth of ZnO on p-GaN/(0001) a-Al2O3 35 4-2 H2 post-treatment of as-grown ZnO nanorods 41 4-2.1 Effects of temperature on H2 post-treatment of ZnO nanorods 41 4-2.2 Effects of treating time on H2 post-treatment of ZnO nanorods and a proposed mechanism 41 4-2.3 Formation of ZnO nanorods from H2 post-treatment of ZnO films 48 4-2.4 Various aspect-ratios of H2 post-treatment of ZnO nanorods 48 4-2.5 TEM analyses of ZnO nanorods after H2 post-treatment 52 4-2.6 Optical properties of ZnO nanorods after H2 post-treatment 52 4-3 Size-dependent Cathodoluminescence of individual ZnO nanorods 57 Chapter 5 Summary 62 Reference 64

    1. “Nano tech 2003 and future”, International Congress and Exhibition on
    Nanotechnology, Feb. 2003, Chiba, Japan
    2. Younan Xia, Peidong Yang, Yugang Sun, Yiyinh Wu, Brian Mayers, Byron Gates,
    Yadong Yin, Franklin Kim, and Haoquan Tan, Adv. Mater. 2003, 15, 353
    3. S. Iijima, Nature 1991, 354, 56
    4. David Appell, Nature 2003, 419, 553
    5. Jiangtao Hu, Teri Wang Odom, and C. M. Lieber, Acc. Chem. Res. 1999, 32, 435
    6. Yi Chi, and Charles M. Lieber, Science 2001, 291, 851
    7. Yi Chi, Qingqiao Wei, Hongkun Park, and C. M. Lieber, Science 2001, 293,
    1289
    8. Peidong Yang, Business briefing: Global photonics applications & technology
    2002
    9. E. Kaldis, Current Topics in Materials Science 1981, 7
    10. Toshiyuki Nakamura, Yasusei Yamada, Takeshi Kusumori, Hideki Minoura,
    and Hachizo Muto, Thin solid films 2002, 411, 60
    11. (a) Huang, M. H.; Wu, Y. Feick, H.; Tran, N.; Weber, E.; Yang, P. Adv.
    Mater. 2001, 13, 113-116; (b) Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.;
    Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407-409
    12. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947-1949.
    13. (a) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.;
    Russo, R.; Yang, P. Science 2001, 292, 1897-1899; (b) Johnson, J. C.; Yan,
    H.; Schaller, R.; Haber, L. H.; R. J. Saykally,; Yang, P., J. Phys. Chem. B
    2001, 105, 11387-11390
    14. (a) Wu, J.-J.; Liu, S.-C., Adv. Mater. 2002, 14, 215-218. (b) Wu, J.-J.;
    Liu, S.-C., J. Phys. Chem.B 2002, 106, 9546-9551.
    15. Alfredo M. Morales, and C.M. Lieber Science 1998, 279, 298
    16. Y. Wu, and P. Yang, J. Acm. Chem. Soc. 2001, 123, 3165
    17. (a) M. T. Bjo¨rk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H.
    Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, Appl. Phys.
    Lett. 2002, 80, 1058; (b)Yiying Wu, Rong Fan, and Peidong Yang, Nano Lett.
    2002, 2, 83; (c) M. T. Bjo1rk, B. J. Ohlsson, T. Sass, A. I. Persson, C.
    Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson,
    Nano Lett. 2002, 2, 87
    18. (a) Y. Wu, H. Yan, M.Huang, B. Messer, J. Song, and P. Yang, Chem Eur. J.
    2002, 8, 1260; (b) M. S. gudiksen, and C. M. Lieber, J. Am. Chem. Soc. 2002,
    122, 8801
    19. (a) A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xua, Appl. Phys.
    Lett 2001, 79, 1039; (b) G.S. Cheng a, S.H. Chen a, X.G. Zhu a, Y.Q. Mao b,
    and L.D. Zhang, Materials Science & Engineering A 2000, A186, 165
    20. Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wanf, Science 2001 291, 1947
    21. Puxian Gao, and Zhong Liu Wang, J. Phys. Chem. B 2002, 106, P12653
    22. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, Nano Lett. 2003, 3, 235
    23. Zhengrong R. Tian, James A. Voigt, Jun Liu,* Bonnie Mckenzie, and Matthew J.
    Mcdermott, J. Acm. Chem. Soc. 2002, 124, 12954
    24. (a) F. H. Nicoll, Appl. Phys. Lett. 1966, 9, 13; (b) J. M. Hvam, Solid State
    Commun. 1973, 12, 95
    25. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao S. Koyama, M. Y. Shen, and T.
    Goto, Appl. Phys. Lett. 1997, 70, 2230
    26. A. Ohtomo, M. Kawasaki, T. Koida, H. Koinuma, Y. Sakurai, Y. Yoshida, M.
    Sumiya, S. Fuke, T. Yasuda, and Y. Segawa, Mater. Sci. Forum 1998, 264, 1463
    27. W. J. Liu, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 1999,
    203, 186
    28. Justin C. Johnson, Haoquan Yan, Richard D. Schaller, Louis H. Habor, Richard
    J.Saykally, and Peidong Yang, J. Phys. Chem. B 2001, 105, 11387
    29. Won Il Park, Gyu-Chul Yi, Miyoung Kim, and Stephen. J. Pennycook, Adv.
    Mater. 2003, 15, 526
    30. G. D. Gilliland, Mater. Sci. and Engineering 1997, R18, 3-6
    31. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 1999, 203,
    186

    下載圖示 校內:2004-07-07公開
    校外:2004-07-07公開
    QR CODE