| 研究生: |
溫慧怡 Wen, Hui-I |
|---|---|
| 論文名稱: |
高長寬比氧化鋅奈米柱之生成-氫氣後處理效應之研究 Aspect-ratio enhancement of the ZnO nanorods using hydrogen post-treatment |
| 指導教授: |
吳季珍
Wu, Jih-Jen 劉全璞 Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 一維奈米材料 、氧化鋅 |
| 外文關鍵詞: | 1-D nanomatertials, ZnO |
| 相關次數: | 點閱:53 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Formation of the ZnO film and ZnO nanorod has been achieved using a simple CVD method at low temperatures in this study. It is concluded that both growth temperature and reacting gas concentrations dominated the formation of ZnO nanorods. PL spectra indicate ZnO nanorods exhibit a strong UV emission at around 386 nm under room temperature. The quality of ZnO nanorod is better than ZnO film due to the absence of the blue and green band emissions. XRD spectra indicate that both ZnO film and ZnO nanorods are preferentially oriented in the c-axis direction. Moreover, epitaxial growth of ZnO films on p-GaN film substrates was demonstrated in this work.
Aspect-ratio enhancement of the as-grown ZnO nanorods is achieved using H2 post- treatment. ZnO nanorods were found to re-deposit in an environment containing H2 and the etching products. Diameter control of the ZnO nanorods is achieved by adjusting the post-treatment conditions. TEM and PL analyses examine that the re-deposited ZnO nanorods possess a single-crystal wurtzite structure with rather good quality. Optical properties of the individual ZnO nanorods with various diameters have been investigated using cathodoluminescence (CL).
1. “Nano tech 2003 and future”, International Congress and Exhibition on
Nanotechnology, Feb. 2003, Chiba, Japan
2. Younan Xia, Peidong Yang, Yugang Sun, Yiyinh Wu, Brian Mayers, Byron Gates,
Yadong Yin, Franklin Kim, and Haoquan Tan, Adv. Mater. 2003, 15, 353
3. S. Iijima, Nature 1991, 354, 56
4. David Appell, Nature 2003, 419, 553
5. Jiangtao Hu, Teri Wang Odom, and C. M. Lieber, Acc. Chem. Res. 1999, 32, 435
6. Yi Chi, and Charles M. Lieber, Science 2001, 291, 851
7. Yi Chi, Qingqiao Wei, Hongkun Park, and C. M. Lieber, Science 2001, 293,
1289
8. Peidong Yang, Business briefing: Global photonics applications & technology
2002
9. E. Kaldis, Current Topics in Materials Science 1981, 7
10. Toshiyuki Nakamura, Yasusei Yamada, Takeshi Kusumori, Hideki Minoura,
and Hachizo Muto, Thin solid films 2002, 411, 60
11. (a) Huang, M. H.; Wu, Y. Feick, H.; Tran, N.; Weber, E.; Yang, P. Adv.
Mater. 2001, 13, 113-116; (b) Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.;
Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407-409
12. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947-1949.
13. (a) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.;
Russo, R.; Yang, P. Science 2001, 292, 1897-1899; (b) Johnson, J. C.; Yan,
H.; Schaller, R.; Haber, L. H.; R. J. Saykally,; Yang, P., J. Phys. Chem. B
2001, 105, 11387-11390
14. (a) Wu, J.-J.; Liu, S.-C., Adv. Mater. 2002, 14, 215-218. (b) Wu, J.-J.;
Liu, S.-C., J. Phys. Chem.B 2002, 106, 9546-9551.
15. Alfredo M. Morales, and C.M. Lieber Science 1998, 279, 298
16. Y. Wu, and P. Yang, J. Acm. Chem. Soc. 2001, 123, 3165
17. (a) M. T. Bjo¨rk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H.
Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, Appl. Phys.
Lett. 2002, 80, 1058; (b)Yiying Wu, Rong Fan, and Peidong Yang, Nano Lett.
2002, 2, 83; (c) M. T. Bjo1rk, B. J. Ohlsson, T. Sass, A. I. Persson, C.
Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson,
Nano Lett. 2002, 2, 87
18. (a) Y. Wu, H. Yan, M.Huang, B. Messer, J. Song, and P. Yang, Chem Eur. J.
2002, 8, 1260; (b) M. S. gudiksen, and C. M. Lieber, J. Am. Chem. Soc. 2002,
122, 8801
19. (a) A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xua, Appl. Phys.
Lett 2001, 79, 1039; (b) G.S. Cheng a, S.H. Chen a, X.G. Zhu a, Y.Q. Mao b,
and L.D. Zhang, Materials Science & Engineering A 2000, A186, 165
20. Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wanf, Science 2001 291, 1947
21. Puxian Gao, and Zhong Liu Wang, J. Phys. Chem. B 2002, 106, P12653
22. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, Nano Lett. 2003, 3, 235
23. Zhengrong R. Tian, James A. Voigt, Jun Liu,* Bonnie Mckenzie, and Matthew J.
Mcdermott, J. Acm. Chem. Soc. 2002, 124, 12954
24. (a) F. H. Nicoll, Appl. Phys. Lett. 1966, 9, 13; (b) J. M. Hvam, Solid State
Commun. 1973, 12, 95
25. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao S. Koyama, M. Y. Shen, and T.
Goto, Appl. Phys. Lett. 1997, 70, 2230
26. A. Ohtomo, M. Kawasaki, T. Koida, H. Koinuma, Y. Sakurai, Y. Yoshida, M.
Sumiya, S. Fuke, T. Yasuda, and Y. Segawa, Mater. Sci. Forum 1998, 264, 1463
27. W. J. Liu, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 1999,
203, 186
28. Justin C. Johnson, Haoquan Yan, Richard D. Schaller, Louis H. Habor, Richard
J.Saykally, and Peidong Yang, J. Phys. Chem. B 2001, 105, 11387
29. Won Il Park, Gyu-Chul Yi, Miyoung Kim, and Stephen. J. Pennycook, Adv.
Mater. 2003, 15, 526
30. G. D. Gilliland, Mater. Sci. and Engineering 1997, R18, 3-6
31. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 1999, 203,
186