| 研究生: |
鄭偉成 Cheng, Wei-Cheng |
|---|---|
| 論文名稱: |
毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究 Heat Transfer Experiment on Forced Convection Performance of Water-based Suspensions of Nanoparticles and/or MEPCM Particles in a Minichannel Heatsink |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 奈米顆粒 、相變化微膠囊 、懸浮液 、毫米流道熱沉 、強制對流 |
| 外文關鍵詞: | nanoparticles, MEPCM, minichannel heatsink, force convection |
| 相關次數: | 點閱:123 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在以實驗量測方式探討在毫米流道熱沉孔間流過包含純水、奈米流體、相變化微膠囊懸浮液,與奈米顆粒/相變化微膠囊混合懸浮液等四種不同工作流體的強制對流熱傳特性。實驗所製作的毫米流道熱沉之材料為紅銅,共有10條寬1mm、高1.5mm、長50mm的流道,其水力直徑為1.2mm,。毫米流道熱沉底部係黏置加熱片以模擬等熱通量加熱邊界條件,強制對流實驗之雷諾數範圍介於133-1515間。本文使用的相變化材料微粒係內包二十烷之膠囊,所調配之相變化微粒懸浮液其含相變化材料質量濃度計有0%、2%、5%、10%;奈米流體內含之奈米氧化鋁顆粒之質量濃度為0%、2%、4%、6%、8%、10%。熱傳實驗結果顯示,相較純水,奈米流體在最高流量流經毫米流道熱沉時,其平均熱傳係數增益可達57%,且其壓降僅小幅度提升11%;另一方面,相變化微粒懸浮液則在以最低流量時,可有效提升平均熱傳係數51%,但大幅度提升壓降71%。以奈米顆粒/相變化微膠囊混合懸浮液為毫米流道熱沉之工作流體時,實驗數據充分顯示可發揮奈米顆粒/相變化微膠囊互補功效,致使熱沉之熱溢散效率在各流量下皆有良好的提升,其最佳熱傳係數增益可進一步提升56%。
In the present study, experimental efforts have been undertaken to explore the forced convection heat transfer efficacy of using water-based suspensions of alumina nanoparticles (nanofluid) and/or microencapsulated phase change material (MEPCM) particles (PCM suspension) to replace the pure water as the working fluids in a minichannel heat sink. The heatsink fabricated from copper consists of 10 rectangular minichannels, each of which has a width of 1mm, a depth of 1.5mm, a length of 50mm, having a hydraulic diameter of 1.2mm. The minichannel heatsink was heated with a uniform base heat flux in the experiments with the Reynolds numbers ranged from 133 to 1515. The mass fractions of the nanoparticles and MEPCM particles dispersed in the water-based suspensions were in the ranges of 2-10 wt.%, respectively. Experimental results obtained reveal that the heat dissipation effectiveness of the nanofluid and PCM suspension depends significantly on their flow rates through the heatsink. For the nanofluid, the highest enhancement of 57 % in the averaged heat transfer coefficient was detected under the highest flow rate; while for the PCM suspension, the highest enhancement of 51% under the lowest flow rate. For the hybrid water-based suspensions, the effect of simultaneous dispersion of the nanoparticles and MEPCM particles in water appears to be supplementary with added benefit of simultaneous increases in the effective thermal conductivity and specific heat such that the heat transfer effectiveness could be further increased up to 56% with little dependence on the flow rate.
Adams, T.M., Abel-khalik, S.I., Jeter, S.M., and Qureshi, Z.H., “An Experimental Investigation of Single-phase Forced Convection in Microchannel,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 851~857, 1998.
Chein, R., Huang, G., “Analysis of Mirochannel Heat Sink Performance Using Nanofluids,” Applied Thermal Engineering, pp. 3104-3114, Vol. 25, 2005.
Dutkowski, K., “Experimental Investigation of Poiseuille Number Laminar Flow of Water and Air in Minichannel,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 5983-5990, 2008.
Gao, P., Person, S.L, and Favre-marinet, M., “Scale Effect on Hydrodynamics and Heat Transfer in Two-dimensional Mini and Microchannel,” International Journal of Thermal Science, Vol. 41, pp. 1017-1027, 2002.
Green, C.E., Fedorov, A.G., and Joshi, Y.K., “Scaling Analysis of Performance Tradeoffs in Electronic Cooling,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, NO. 4, DECEMBER 2009.
Ho, C.J., Wei, L.C., and Li, Z.W., “An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink with Al2O3/Water Nanofluid,” Applied Thermal Engineering, Vol. 30, pp. 96-133, 2010.
Heming, Y., “Numerical Simulation of Geometrical Effects on the Liquid Flow and Heat Transfer in Smooth Rectangular Microchannels,” Processing of the ASME 2009 2nd Micro/Nanoscale Heat and Mass Transfer International Conference, December 18-21, 2009, Shanghai, China.
Jang, S.P., Choi, S.U.S., “Cooling Peerformance of a Microchannel Heat Sink with Nanofluids,” Applied Thermal Engineering, Vol. 26, pp 2457-2463, 2006.
Lee, P.S., Garimella, S.V., and Liu, D., “Investigation of Heat Transfer in Rectangular Microchannels,” International Journal of Heat and MassTransfer, Vol. 48, pp. 1688-1704, 2005.
Lee, P.S., Garimella, S.V., “Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3060-3067, 2005.
Lee, J., Mudawar, I., “Assessment of the Effectiveness of Nanofluids for Single-phase and Two-phase Heat Transfer in Micro-channels,” International Journal of Heat and MassTransfer, Vol. 50, pp. 452-463, 2007.
Qu, W., Mudawar, I., “Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-phase Micro-channel Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565, 2002.
Reynaud, S., Debray, F., Franc, J.P., and Maitre, T., “Hydrodynamics and Heat Transfer in Two-dimensional Minichannels,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3197-3211, 2005.
Rao , Y., Dammel, F., and Stephan, P., “Experiments on the Cooling Performance of Microencapsulated Phase Change Material Suspension Flow in Rectangular Minichannels, ASME-JSME Thermal Engineering Summer Heat Transfer Conference, July 8-12, 2007, Vancouver, British Columbia, Canada.
Rao ,Y., Dammel, F., and Stephan, P., “Convective Heat Transfer Characteristics of Microencapsulated Phase Change Material Suspensions in Minichannels,” Heat Mass Transfer, Vol. 44, pp. 175-186, 2007.
Sabbah, R., Farid, M.M., Al-Hallaj, S., “Micro-channel Heat Sink with slurry of Water with Micro-encapsulated Phase Change Material:3D-numerical Study,” Applied Thermal Engineering, Vol. 29, pp. 445-454, 2008.
Singh, P.K., Sundararajan, T., and Das, S.K., “Hydrodynamic Study of Nanofluids in Microchannel,” ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, DECEMBER 18-21, 2009, Shanghai, China.
Tsai, T.H., Chein, R., “Performance Analysis of Nanofluid-cooled Microchannel Heat Sinks,” International Journal of Heat and Fluid Flow, Vol. 28, pp. 1013-1026, 2007.
Wang, Y., Chung, S.J., Leonard, J.P., Cho, S.K., Phuoc, T., Soong, Y., and Chyu, M.K., “Cooling Performance of Nanofluids in a Microchannel Heat Sink,” ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, DECEMBER 18-21, 2009, Shanghai, China.
Xie, X.L., Liu, Z.J., He, Y.L., and Tao, W.Q., “Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristic in Water-cooled Minichannel Heat Sink,” Applied Thermal Engineering, Vol. 29, pp. 64-74, 2009.
曾元宏, “相變化微膠囊之製備及其特性分析,” 國立成功大學化學工程研究所碩士論文, 2001
呂育翰, “相變化材料顆粒與奈米流體混合液之相關熱物性質量測與分析,” 國立成功大學機械工程研究所碩士論文, 2006
魏連晉, “微流道熱沉孔奈米流體之強制對流熱傳實驗研究,” 國立成功大學機械工程研究所碩士論文, 2007
黃俊博, “一水平圓管內PCM微粒/奈米微粒懸浮流體之熱發展強制對流熱傳特性研究,” 國立成功大學機械工程研究所碩士論文, 2008