| 研究生: |
顏家聖 Yen, Chia-Sheng |
|---|---|
| 論文名稱: |
探討肝切除後麩醯胺酸對肝再生的影響及微小核醣核酸在肝細胞癌的預後關聯 Investigating the clinical significance of hepatectomy: glutamine supplementation in liver regeneration and clinical outcome of miRNA in hepatocellular carcinoma |
| 指導教授: |
沈延盛
Shan, Yan-Shen 洪澤民 Hong, Tse-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 麩醯胺酸 、鳥氨酸轉氨酶 、肝臟再生 、微小核醣核酸106b 、B 型肝炎病 毒X 蛋白 、肝細胞癌 |
| 外文關鍵詞: | Glutamine, ornithine aminotransferase, liver regeneration, miRNA, HBx, HCC |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝細胞癌是最常見的肝臟原發性癌症且也是因癌症死亡的主要原因之一。手術切除含有腫瘤的肝臟是肝癌的一種重要治療方式,因為肝臟具有獨特的再生能力可以修復損傷,可以在組織受傷後再生成相同質量的器官。因此,剩餘肝臟的再生是手術成功的關鍵。但是大多數肝癌病患既使成功切除腫瘤,仍很快復發並且預後不良。因此,病患切除腫瘤後同時進行營養補充物有效加強肝臟再生功能及找出生物標記物預測手術後B型肝炎相關之肝細胞癌病人的預後是最迫切需要發展之研究主題與方向。本論文中,我們將探討麩醯胺酸對肝臟切除後的肝臟再生影響及肝臟再生中有影響的微小核醣核酸106b (miR-106b)對B型肝炎相關之肝細胞癌病人的影響。第一部分的研究,肝臟再生過程中受到高度調節並且涉及不同細胞型態、複雜的分子機制、肝外訊息傳導路徑以及細胞間交互作用。儘管在過去十年,科學家致力於發展肝臟再生的臨床應用及探索其生理機轉,但目前仍有許多未知存在,其中包括參與肝臟再生機轉的重要分子和機制。首先,我們成功建立了存活率高且個體間差異小的肝切除小鼠模式用以研究肝臟再生的分子機制。在此模式下,麩醯胺酸的補充可以促進肝切除術後小鼠肝臟質量的恢復並增強肝細胞的增殖作用。鳥氨酸轉氨酶 (Ornithine aminotransferase)在肝切除後肝臟再生過程中表現量有增加,在肝門靜脈周邊區域,鳥氨酸轉氨酶的蛋白質及訊息核醣核酸的表現量有顯著增強的情形,但麩醯胺酸的補充與否對鳥氨酸轉氨酶的表現並無相關。另外,我們找出十四個由麩醯胺酸所調控的細胞週期相關基因,並在小鼠及AML-12細胞系統下,證實這些基因的調控在肝臟再生過程中所產生的影響。這些數據顯示,麩醯胺酸的補充可以透過調控細胞週期相關基因的表現而造成肝細胞的迅速增殖。鳥氨酸轉氨酶受到抑制的小鼠系統下,麩醯胺酸對肝臟細胞增生的促進也同樣受到抑制,鳥氨酸轉氨酶對麩醯胺酸在肝臟再生過程中有扮演一定的角色。此外,我們利用HistoIndex的系統,來分析肝臟在生過程中膠原蛋白產生的量、時間點、及位置,發現麩醯胺酸的補充會促進肝臟再生過程中膠原蛋白產生的量進而加速肝臟血管增生形成。第二部分的研究,慢性肝炎如B型肝炎等會會造成肝臟纖維化及肝細胞再生,而肝細胞的增生有可能導致惡性變化。微小核糖核酸會調控基因的表現影響細胞的增生或凋零。因此,研究目的是找出微小核醣核酸106b在B型肝炎相關之肝細胞癌生成及調控的機制。微小核醣核酸106b在B型肝炎相關之肝細胞癌會高度表現,並且B型肝炎病毒X蛋白會增強微小核醣核酸106b的表現。臨床上,B型肝炎相關的肝細胞癌的病人中微小核醣核酸106b大量表現與較差分化及病人預後呈現正相關。臨床上,我們的研究結果將有助於瞭解麩醯胺酸對肝臟受損的病理機制及再生的機制,及miR-106b的表現對於B型肝炎相關的肝細胞癌預測,提供臨床上肝癌病人接受手術及手術後的治療新策略。
Hepatocellular carcinoma (HCC) is primary malignancy type of liver cancers and a leading cause of cancer-related death occurs in the world. Removing tumor by partial hepatectomy is an important treatment for HCC. The liver has the unique ability to regenerate in response to injury and therefore restore its original mass after tissue loss. Thus, the regeneration of remnant liver is a key point for successful surgery. However, HCC patients possibly have the poor survival rate and increased risk of tumor recurrence after curative hepatectomy. Therefore, it is urgently needed to proceed in parallel between nutrient supplements for enhancing liver repair and identification of the potential prognostic biomarkers for HBV-associated HCC after surgery. In this study, the aim of this research is to explore the effect of glutamine (Gln) supplementation during liver regeneration and the role of miR-106b in tumor progression and regulation in HBV-associated HCC. In first topic, liver regeneration is highly regulated and involves in many cell types, complex molecular mechanisms, extra-hepatic signaling pathways, and cellular interactions. Despite the advances in biological understanding and clinical applications of liver regeneration have occurred in the past decades, many gaps are still exist, including the critical factors involved in liver regeneration and how it works in the process of liver regeneration. This study is to clarify the molecular mechanism of liver regeneration post partial hepatectomy (PHx) in the present of Gln supplementation. We have established a reliable 70% PHx mouse model with high survival rate and high reproducible results between individual mice for the studying the liver regeneration. Gln supplementation enhances liver mass restitution and improves hepatic cell proliferation during liver regeneration in mice post PHx. Microarray data is performed to isolate meaningfully different gene categories associated with liver regeneration and provide a comprehensive view on gene modulation by Gln supplementation. 14 crucial Gln-modulated cell cycle-related genes are identified and suggesting that Gln supplementation could promote cell cycle progression through modulation of cell cycle-related gene expression resulting in a rapid proliferation of hepatic cells. Moreover, ornithine aminotransferase (OAT) is identified during the process of liver regeneration. Strikingly, the protein expression of OAT significantly is up-regulated around the portal vein area in liver, but its high expression do not correlate with Gln supplementation. We further find that OAT knockdown results in a decreased hepatocyte proliferation in the presence of Gln. Notably, we find that Gln treatment enhances the synthesis of collagen to promote vessels formation of portal vein and hepatic vein during liver regeneration process after PHx using HistoIndex system. In second topic, chronic hepatitis infection causes liver inflammation damage, followed by fibrosis, liver cell regeneration and liver cell proliferation leading to the malignant transformation of the liver. MicroRNAs (miRNAs) are small non-protein coding genes with important roles in the regulation of gene expression at the post-transcriptional level. MiRNA plays a role in the regulation of cell development, proliferation, cell fate determination and apoptosis. The aim of this study is to clarify the roles of miR-106b in tumor progression and regulation in HBV-associated HCC. These results indicate that miR-106b expression is up-regulated and associated with tumor progression in HBV-associated HCC. In addition, HBx might enhance miR-106b transcription. Up-regulation of miR-106b expression corresponds with poor differentiation and decreased survival time in HBV-associated HCC patients. Thus, miR-106b promotes tumor progression in HBV-associated HCC. Overall, we ultimately provide a new treatment strategy for liver recovery using Gln supplementation and a potential diagnostic marker for HBV-associated HCC patients received hepatectomy.
References
1. Seeff LB, Hoofnagle JH. Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity. Oncogene 2006;25:3771-3777.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
3. Ahmed I, Lobo DN. Malignant tumours of the liver. Surgery (Oxford) 2009;27:30-37.
4. Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 2006;25:3823-3833.
5. Fung J, Lai CL, Yuen MF. Hepatitis B and C virus-related carcinogenesis. Clin Microbiol Infect 2009;15:964-970.
6. Arbuthnot P, Kew M. Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 2001;82:77-100.
7. Kumagi T, Hiasa Y, Hirschfield GM. Hepatocellular carcinoma for the non-specialist. Bmj 2009;339:b5039.
8. Buendia MA, Neuveut C. Hepatocellular carcinoma. Cold Spring Harb Perspect Med 2015;5:a021444.
9. Bialecki ES, Di Bisceglie AM. Diagnosis of hepatocellular carcinoma. HPB : The Official Journal of the International Hepato Pancreato Biliary Association 2005;7:26-34.
10. Castaing D, Azoulay D, Bismuth H, Adam R, Meriggi F. Repeat hepatectomy for primary liver cancer. 2001.
11. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004;5:836-847.
12. Fausto N. Liver regeneration. J Hepatol 2000;32:19-31.
13. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-385.
14. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci (Landmark Ed) 2012;17:2508-2540.
15. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.
16. Wei X, Tan C, Tang C, Ren G, Xiang T, Qiu Z, Liu R, et al. Epigenetic repression of miR-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma. Cell Signal 2013;25:1037-1043.
17. Zeng Q, Jin C, Chen W, Xia F, Wang Q, Fan F, Du J, et al. Downregulation of serum miR-17 and miR-106b levels in gastric cancer and benign gastric diseases. Chin J Cancer Res 2014;26:711-716.
18. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-833.
19. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-714.
20. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 2008;28:2167-2174.
21. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 2008;68:8191-8194.
22. McCann MJ, Rowland IR, Roy NC. The anti-proliferative effects of enterolactone in prostate cancer cells: evidence for the role of DNA licencing genes, mi-R106b cluster expression, and PTEN dosage. Nutrients 2014;6:4839-4855.
23. Yang TS, Yang XH, Chen X, Wang XD, Hua J, Zhou DL, Zhou B, et al. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett 2014;588:2162-2169.
24. Zhang R, Wang W, Li F, Zhang H, Liu J. MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers. Med Oncol 2014;31:243.
25. Facoetti A, Ranza E, Grecchi I, Benericetti E, Ceroni M, Morbini P, Nano R. Immunohistochemical evaluation of minichromosome maintenance protein 7 in astrocytoma grading. Anticancer Res 2006;26:3513-3516.
26. Zhou YM, Zhang XF, Cao L, Li B, Sui CJ, Li YM, Yin ZF. MCM7 expression predicts post-operative prognosis for hepatocellular carcinoma. Liver Int 2012;32:1505-1509.
27. Li SS, Xue WC, Khoo US, Ngan HY, Chan KY, Tam IY, Chiu PM, et al. Replicative MCM7 protein as a proliferation marker in endometrial carcinoma: a tissue microarray and clinicopathological analysis. Histopathology 2005;46:307-313.
28. Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, Michalopoulos G, et al. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 2006;25:1090-1098.
29. Ota T, Clayton AC, Minot DM, Shridhar V, Hartmann LC, Gilks CB, Chien JR. Minichromosome maintenance protein 7 as a potential prognostic factor for progression-free survival in high-grade serous carcinomas of the ovary. Mod Pathol 2011;24:277-287.
30. Date PA, Gothoskar SV, Bhide SV. Effect of partial hepatectomy on tumor incidence and metabolism of mice fed thioacetamide. J Natl Cancer Inst 1976;56:493-497.
31. Hanigan MH, Winkler ML, Drinkwater NR. Partial hepatectomy is a promoter of hepatocarcinogenesis in C57BL/6J male mice but not in C3H/HeJ male mice. Carcinogenesis 1990;11:589-594.
32. Arai M, Yokosuka O, Chiba T, Imazeki F, Kato M, Hashida J, Ueda Y, et al. Gene Expression Profiling Reveals the Mechanism and Pathophysiology of Mouse Liver Regeneration. Journal of Biological Chemistry 2003;278:29813-29818.
33. Michalopoulos GK. Liver regeneration. Journal of Cellular Physiology 2007;213:286-300.
34. FitzGerald MJ, Webber EM, Donovan JR, Fausto N. Rapid DNA binding by nuclear factor κB in hepatocytes at the start of liver regeneration. Cell Growth and Differentiation 1995;6:417-427.
35. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver Failure and Defective Hepatocyte Regeneration in Interleukin-6-Deficient Mice. Science 1996;274:1379-1383.
36. Heinrich PC, Behrmann I, Haan S, Hermanns HM, MÜLler-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal 2003;374:1-20.
37. Li W, Liang X, Kellendonk C, Poli V, Taub R. STAT3 Contributes to the Mitogenic Response of Hepatocytes during Liver Regeneration. Journal of Biological Chemistry 2002;277:28411-28417.
38. Menjo M, Ikeda K, Nakanishi M. Regulation of G1 cyclin-dependent kinases in liver regeneration. Journal of Gastroenterology and Hepatology (Australia) 1998;13:S100-S105.
39. Webber EM, Wu JC, Wang L, Merlino G, Fausto N. Overexpression of transforming growth factor-α causes liver enlargement and increased hepatocyte proliferation in transgenic mice. American Journal of Pathology 1994;145:398-408.
40. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-[beta] family signalling. Nature 2003;425:577-584.
41. Chart RS, Price DT, Sue SR, Meyers WC, Jirtle RL. Down-regulation of transforming growth factor beta receptor type I, II, and III during liver regeneration. The American journal of surgery 1995;169:126-132.
42. Gentric G, Desdouets C, Celton-Morizur S. Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012;2012:282430.
43. Fahraeus R, Paramio JM, Ball KL, Lain S, Lane DP. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr Biol 1996;6:84-91.
44. Ghimenti C, Fiano V, Chiado-Piat L, Chio A, Cavalla P, Schiffer D. Deregulation of the p14ARF/Mdm2/p53 pathway and G1/S transition in two glioblastoma sets. J Neurooncol 2003;61:95-102.
45. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995;11:211-219.
46. Tsai FL, Vijayraghavan S, Prinz J, MacAlpine HK, MacAlpine DM, Schwacha A. Mcm2-7 is an active player in the DNA replication checkpoint signaling cascade via proposed modulation of its DNA gate. Mol Cell Biol 2015;35:2131-2143.
47. Akamatsu E, Tanaka T, Kato JY. Transcription factor E2F and cyclin E-Cdk2 complex cooperate to induce chromosomal DNA replication in Xenopus oocytes. J Biol Chem 1998;273:16494-16500.
48. Ayeni JO, Campbell SD. "Ready, set, go": checkpoint regulation by Cdk1 inhibitory phosphorylation. Fly (Austin) 2014;8:140-147.
49. Chelsky D, Sobotka C, O'Neill CL. Lamin B methylation and assembly into the nuclear envelope. J Biol Chem 1989;264:7637-7643.
50. Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013;118:97-398.
51. Yue H, Fang H, Wei S, Hayes JJ, Lee TH. Single-molecule studies of the linker histone H1 binding to DNA and the nucleosome. Biochemistry 2016;55:2069-2077.
52. Dasso M. RCC1 in the cell cycle: the regulator of chromosome condensation takes on new roles. Trends Biochem Sci 1993;18:96-101.
53. Magalhaes CR, Malafaia O, Torres OJ, Moreira LB, Tefil SC, Pinherio Mda R, Harada BA. Liver regeneration with l-glutamine supplemented diet: experimental study in rats. Rev Col Bras Cir 2014;41:117-121.
54. Qiu Y, Zhu X, Wang W, Xu Q, Ding Y. Nutrition support with glutamine dipeptide in patients undergoing liver transplantation. Transplant Proc 2009;41:4232-4237.
55. Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene--two products--two pathways. Trends Biochem Sci 1998;23:291-296.
56. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999;13:2658-2669.
57. Bartkova J, Lukas J, Guldberg P, Alsner J, Kirkin AF, Zeuthen J, Bartek J. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res 1996;56:5475-5483.
58. Hutchins JR, Moore WJ, Hood FE, Wilson JS, Andrews PD, Swedlow JR, Clarke PR. Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr Biol 2004;14:1099-1104.
59. Li HY, Zheng Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev 2004;18:512-527.
60. Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 2000;14:2283-2297.
61. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 2002;21:5911-5920.
62. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 2005;171:35-45.
63. Moir RD, Montag-Lowy M, Goldman RD. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J Cell Biol 1994;125:1201-1212.
64. Wernerman J. Clinical use of glutamine supplementation. J Nutr 2008;138:2040S-2044S.
65. Shao A, Hathcock JN. Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regul Toxicol Pharmacol 2008;50:376-399.
66. Holecek M. Side effects of long-term glutamine supplementation. JPEN J Parenter Enteral Nutr 2013;37:607-616.
67. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 2013;368:1489-1497.
68. Eymin B, Gazzeri S. Role of cell cycle regulators in lung carcinogenesis. Cell Adh Migr 2010;4:114-123.
69. Nowinska K, Dziegiel P. The role of MCM proteins in cell proliferation and tumorigenesis. Postepy Hig Med Dosw (Online) 2010;64:627-635.
70. Xu S, Kang CH, Gou X, Peng Q, Yan J, Zhuo S, Cheng CL, et al. Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface. J Biophotonics 2016;9:351-363.
71. Strupler M PA, Hernest M, Tharaux PL, Martin JL, Beaurepaire E, Schanne-Klein MC. Second harmonic imaging and scoring of collagen in fibrotic tissues. 2007.
72. Moreaux L, Sandre O, Blanchard-Desce M, Mertz J. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt Lett 2000;25:320-322.
73. Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD. 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 2003;141:53-62.
74. Xu S, Wang Y, Tai DC, Wang S, Cheng CL, Peng Q, Yan J, et al. qFibrosis: a fully-quantitative innovative method incorporating histological features to facilitate accurate fibrosis scoring in animal model and chronic hepatitis B patients. J Hepatol 2014;61:260-269.
75. Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 2014;5:533.
76. Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, Vasseur-Cognet M, et al. Apc tumor suppressor gene is the "zonation-keeper" of mouse liver. Dev Cell 2006;10:759-770.
77. Thirion M, Ochiya T. Roles of microRNAs in the hepatitis B virus infection and related diseases. Viruses 2013;5:2690-2703.
78. Zhang Q, Cao G. Genotypes, mutations, and viral load of hepatitis B virus and the risk of hepatocellular carcinoma: HBV properties and hepatocarcinogenesis. Hepatitis Monthly 2011;11:86-91.
79. Tian Y, Ou J-h. Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma. Virologica Sinica 2015;30:85-91.
80. Xu C, Zhou W, Wang Y, Qiao L. Hepatitis B virus-induced hepatocellular carcinoma. Cancer Lett 2014;345:216-222.
81. Miller RH, Robinson WS. Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sci U S A 1986;83:2531-2535.
82. Tang H, Delgermaa L, Huang F, Oishi N, Liu L, He F, Zhao L, et al. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. J Virol 2005;79:5548-5556.
83. Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011;26 Suppl 1:144-152.
84. Tian Y, Yang W, Song J, Wu Y, Ni B. Hepatitis B virus X protein-induced aberrant epigenetic modifications contributing to human hepatocellular carcinoma pathogenesis. Mol Cell Biol 2013;33:2810-2816.
85. Doria M, Klein N, Lucito R, Schneider RJ. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. Embo j 1995;14:4747-4757.
86. Song R, Ro S, Yan W. In situ hybridization detection of microRNAs. Methods in molecular biology (Clifton, N.J.) 2010;629:287-294.
87. Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions [mdash] beyond repression of gene expression. Nat Rev Genet 2014;15:599-612.
88. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-714.
89. Yang HI, Sherman M, Su J, Chen PJ, Liaw YF, Iloeje UH, Chen CJ. Nomograms for risk of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J Clin Oncol 2010;28:2437-2444.
90. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
91. Mizuguchi Y, Takizawa T, Uchida E. Host cellular microRNA involvement in the control of hepatitis B virus gene expression and replication. World J Hepatol 2015;7:696-702.
92. Lin L, Yin X, Hu X, Wang Q, Zheng L. The impact of hepatitis B virus x protein and microRNAs in hepatocellular carcinoma: a comprehensive analysis. Tumour Biol 2014;35:11695-11700.
93. Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y, Agarwal R, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 2009;136:1689-1700.
94. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, Zhu Z, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest 2013;123:630-645.
95. Zhang W, Lu Z, Kong G, Gao Y, Wang T, Wang Q, Cai N, et al. Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP. Mol Cancer 2014;13:128.
96. Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, et al. Hepatitis B virus X protein upregulates mTOR signaling through IKKbeta to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS One 2012;7:e41931.
97. Zhang XD, Wang Y, Ye LH. Hepatitis B virus X protein accelerates the development of hepatoma. Cancer Biol Med 2014;11:182-190.
98. Bailis JM, Forsburg SL. MCM proteins: DNA damage, mutagenesis and repair. Curr Opin Genet Dev 2004;14:17-21.
校內:2024-01-31公開