| 研究生: |
湯相岐 Tang, Hsiang-Chi |
|---|---|
| 論文名稱: |
以類鑽碳薄膜製成之MIS元件其光電特性分析 Studies of electrical and optical characteristics of DLC MIS structure |
| 指導教授: |
田興龍
Tien, Shien-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 可靠度 、拉曼光譜 、金氧半導體 、類鑽碳 、介電材料 |
| 外文關鍵詞: | MIS, MOS, DLC, dielectric, Raman spectrum, reliability |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
漏電流大小長久以來一直被視為是衡量介電材料在元件應用其可行性的重要依據。在本論文中,我們以類鑽碳薄膜(Diamond-like Carbon Film,DLC)作為金屬絕緣體半導體(MIS)元件的閘極介電材料。以直流濺鍍系統在較高真空環境下以低濺鍍速率及不同濺鍍偏壓在Si基板上成長DLC薄膜。先以拉曼光譜求樣品之D Peak與G Peak強度面積比例(I(D)/I(G)),再以IV量測儀量得元件的漏電流和分析其可靠度(Reliability),其結果可用DLC薄膜化學鍵結生成關係和介電層陷阱中心理論說明之,而元件漏電流大小和可靠度優劣與拉曼光譜界定DLC薄膜絕緣能力的趨勢相符。在不同濺鍍偏壓成膜的MIS元件中,以1100V偏壓成膜的樣品其元件的漏電流和可靠度分析表現最佳,當閘極偏壓為2V時,漏電流為6*10-8 A/cm2,而崩潰(Breakdown)電場可達120MV/cm,元件因應力導致的漏電流相當輕微,且在時間相依介電崩潰(TDDB)試驗中存在多次軟性崩潰的現象。
The amount of leakage current has been judged whether the dielectric material was suit for isolated layer of metal-isolator-semiconductor (MIS) or not for a long time. In the thesis, we used diamond-like carbon film (DLC) as the gate dielectric of MIS device. DLC layers were deposited with various bias voltages by the dc magnetron sputtering. We chose low deposition rates and higher vacuum circumstances to get DLC films with higher isolated quality. First, we calculated the ratio of the integrated areas of the Raman D and G peaks (ID/IG), and then measured the leakage current of MIS by IV sourcemeter and analyzed the reliability of each sample. The results could be derived from the change of DLC chemical bonds and the trapping center theory. We found that the performance of the leakage current and reliability of each sample was consistent to the isolated ability of the DLC film, which was judged from the Raman spectrum. The MIS device with its DLC film deposited at 1100 V bias owned the best quality about the leakage current and reliability test: the leakage current at 2 V was about 6*10-8 A/cm2, the breakdown electric field was more than 120 MV/cm, the SILC(stress-induced leakage current) of the device was slight, and there existed many times of soft breakdown phenomenon in TDDB(time-dependent dielectric breakdown) test.
1. Yoh-Ichiro Ogita, Shinshi Iehara, Toshiyuki Tomita, “Al2O3 formation on Si by catalytic chemical vapor deposition,” Thin Solid Films 430, 161, (2003).
2. Wen-Jie Qi, Renee Nieh, Byoung Hun Lee, Laegu Kang, Yongjoo Jeon and Jack C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application,” Appl. Phys. Lett. 77 (20), 3269, (2000).
3. R.Paily, A. D DasGupta, N. DasGuptaa,, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, A.K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci. 187, 297, (2002).
4. D-D Han , J-F Kang, Ch-H Lin, R-Q Han, “Reliability characteristics of high-K gate dielectrics HfO2 in metal-oxide semiconductor capacitors,” Microelectronic Engineering 66, 643, (2003).
5. Wang PF, Ding SJ, Zhang W, Wang JT, Lee WW, “Effects of O-2 plasma treatment on the chemical and electric properties of low-k SiOF films,” J. Mater Sci. & Tech. 17 (6), 643, (2001).
6. Qiu Y, Hu YC, Dong GF, Wang LD, Gao YD, “Preparation of organic thin-film field effect transistor,” CHINESE SCIENCE BULLETIN 47 (18), 1529, (2002).
7. A. Grill, “Amorphous carbon based materials as the interconnect dielectric in ULSI chips,” Diamond and Related Materials 10, 234, (2001).
8. D. W. Han, S. M. Jeong, H. K. Baik, S. J. Lee, N. C. Yang, D. H. Suh, “Electron injection enhancement by diamond-like carbon film in organic electroluminescence devices,” Thin Solid Films 420, 190, (2002).
9. M. A. Tamor, W. C. Vassell, “Raman “fingerprinting” of amorphous
carbon films,” J. Appl. Phys. 76(6), 3823, (1994).
10. Pawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, R. Kalish, “ Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition,” Diamond and Related Materials 5, 433, (1996).
11. Papadimitriou D, Roupakas G, Xue C, Topalidou A, Panayiotatos Y, Dimitriadis CA, Logothetidis S, “Raman and photoluminescence study of magnetron sputtered amorphous carbon films,” Thin Solid Films 414(1), 18, (2002).
12.真空技術與應用,精密儀器發展中心出版,民國90年,p.370.
13. M. Yoshikawa, Mater. Sci. Forum 52-53, 365, (1989).
14. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53(3), 1126, (1970).
15. M. K. Fung, W. C. Chan, Z. Q. Gao, I Bello, C. S. Lee, “Effect of nitrogen incorperation into diamond-like carbon films by ECR-CVD,” Diamond and Related Materials 8, 472, (1999).
16. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, R. Kalish, “ Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition,” Diamond and Related Materials 5, 433, (1996).
17. 王哲聰,低溫離子束沈積含氮類鑽碳薄膜之材料結構機械性質及磨潤性能研究,國立成功大學機械系,碩士論文,(2001)
18. Acovic A, LaRosa G, Sun YC, “A review of hot-carrier degradation mechanisms in MOSFETs,” Microelectronics And Reliability 36(7-8), 845, (1996).
19. D. J. DiMaria and J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons, “J. Appl. Phys. 65, 2342, (1989).
20. M. M. Heyns, D. Krishna Rao, and R. F. De Keersmaecker, “Oxide field dependence of Si-SiO2 interface state generation and charge trapping during electron injection,” Appl. Surf. Sci. 39, 327, (1989).
21. E. Harari, “Dielectric breakdown in electrically stressed thin films of thermal SiO2,” J. Appl. Phys. 49, 2478, (1978).
22. J. Sune, I. Placencia, N. Barniol, E. Farrs, and X. Aymerich, “Degradation and breakdown of gate oxide in VLSI device,” Phys. Status Solidi 111, 675, (1989).
23. C. J. Sofield and A. M. Stoneham, “Oxidation of silicon: the VLSI gate dielectic,” Semicond. Sci. Technol.10, 215, (1995).
24. J. Maserijian and N. Zamani, “Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling,” J. Appl. Phys. 53, 559, (1982).
25. Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, “Measurements of Fowler-Nordheim tunneling currents in MOS structures under Charge trapping conditions,” Solid-State Electron. 28 (7), 717, (1985).
26. M. Depas, T. Nigam, and M. M. Heyns, “Soft breakdown of ultra-thin gate oxide layers,” IEEE Trans. Electron. Devices 43(9), 1499, (1996).
27. A. Martin, P. O’Sullivan, and A. Mathewson, “Dielectric reliability measurement method: a review,” Microelectron. Reliab. 38(1), 37, (1998).
28. E. Rosenbaum, J. C. King, and C-M Hu, “Accelerated testing of SiO2 reliability,” IEEE Trans. Electron Devices 43(1), 70, (1996).
29. 洪尚銘,金氧半場效電晶體中應力導致閘極氧化層特性衰減機制之研究,國立成功大學電機系,碩士論文,(2000)
30. B. Ricco, G. Gozzi, M. Lanzoni, IEEE Trans. Electron. Devices 45, 1554, (1998).
31. R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes, “ New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices 45(4), 904, (1998).