簡易檢索 / 詳目顯示

研究生: 許孝慈
Shiu, Shiau-Tsz
論文名稱: 低溫共燒型鎢青銅礦介電材料—Co2Y鐵氧磁體陶瓷複合材料及積層結構之研究
Study on the low-temperature co-fired tungsten bronze dielectric -Co2Y ferrite composites and multilayer structures
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 155
中文關鍵詞: 介電性質複合材料層裂
外文關鍵詞: dielectric properties, composites, delamination
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於同時擁有優異磁及介電性質之複合材料可製作低成本、高性能之高頻複合式L/C EMI 濾波器,近年來已引起學者廣泛之研究。本研究選擇添加不同Bi成分於BaO‧Nd2O3‧4TiO2中,並加入Zn-B-Si玻璃助燒結劑已達低溫燒結效果並探討玻璃助燒結劑對BaO.Nd2O3.4TiO2系統中所產生之影響。研究顯示添加8wt%ZBS玻璃助燒結劑於BNBT(BaO.(Nd0.8Bi0.2)2O3.4TiO2)樣品,可在900℃,2h燒結緻密化,並有優異之介電性質。此外將BNT(BaO.Nd2O3.4TiO2)微波介電粉末與Co2Y鐵氧磁體粉末進行複合,並添加適量之玻璃助燒結劑,雖可在900℃燒結緻密,但Co2Y會因此而分解,利用疊層方式製作積層複合結構發現電容層與電感層於900℃,2h燒結後匹配度良好,無翹曲與大量層裂產生,因此具有做為高頻L/C複合元件原料之潛力。

    Recently, the composites with both superior dielectric and magnetic properties can be used to produce a low cost and high performance L/C EMI filter for high frequency application. A high dielectric constant material, BaO-Nd2O3- Bi2O3-4TiO2, (BNBT) was chosen as the raw material for the present work. Moreover, Zn-B-Si (ZBS) glass was used to decrease the densification temperature of BNBT ceramics. The effects of the addition of various amounts of glasses on both the densification behavior and dielectric properties were investigated. The results revealed that BaO.(Nd0.8Bi0.2)2O3.4TiO2 added with 8wt% ZBS glass could be densified at 900℃ for 2h, which possess excellent dielectric properties. Furthermore, the above dielectric materials were mixed with different amounts of Co2Y ferrites to form the dielectric-magnetic composites. With appropriate glass addition, the dielectric-magnetic composites could be densified at 900℃ for 2 h, but Co2Y would decompose due to the reaction between BNBT and Co2Y. No camber and delamination were found in the multilayer structures formed by alternately laminating BNBT and Co2Y green sheet and sintering at 900℃. This suggests that the BNBT and Co2Y have the potential of being raw materials for high performance L/C EMI components.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1-1前言 1 1-2研究目的 2 第二章、前人研究及理論基礎 3 2-1微波通訊材料 3 2-2低溫共燒陶瓷 5 2-3鎢青銅礦Ba6-2xNd8+2xTi18O54成分系統之晶體結構與其電性質 6 2-4 六方晶型鐵氧磁體結構 11 2-5 介電性質與磁性質 14 2-5-1介電常數 14 2-5-2品質因子 17 2-5-3共振頻率之溫度係數 19 2-5-4 磁性質與其來源 19 2-5-5 磁化率與初始磁導率 20 2-5-6磁滯曲線 22 2-5-7 功率損失(Power loss) 24 2-5-8 磁異向性 25 2-6 添加劑之效果 26 2-7 液相燒結 30 2-7-1粉末顆粒大小對燒結行為之影響 30 2-7-2液相燒結 30 2-7-3接觸角 33 2-7-4溶解度之影響 35 2-8、陶瓷複合材料 37 2-9 共燒時常見之缺陷 38 第三章、實驗方法及步驟 40 3-1 起始原料 40 3-2 粉末及燒結體製備 40 3-2-1 微波介電粉末、磁性粉末、玻璃粉末之製備 40 3-2-2 複合粉末製備 40 3-2-3 微波介電燒結體備製 41 3-2-4 六方晶系鐵氧磁體Co2Y燒結體備製 41 3-2-5 複合材料燒結體備製 41 3-3 材料特性分析 41 3-3-1 燒結收縮曲線及密度 41 3-3-2潤濕角及介面反應之測量 43 3-3-3 相鑑定 43 3-3-4 顯微結構分析 43 3-4 材料性質量測 45 3-4-1 磁性材料與複合材料電性與磁性分析樣品準備 45 3-4-2 磁性材料與複合材料電性與磁性分析 45 3-4-3 微波介電燒結體電性量測樣品準備 45 3-4-4 微波介電性值量測 45 第四章、結果與討論 52 4-1 低溫燒結陶瓷材料微波介電BaO.(Nd1-xBix)2O3.4TiO2系統 52 4-1-1 玻璃添加量對材料結晶行為之影響 52 4-1-2玻璃助燒結劑與BNT潤濕角與介面反應分析 56 4-1-3 玻璃添加量對材料相對密度之影響 60 4-1-4 玻璃添加量對材料收縮行為之影響 60 4-1-5 玻璃添加量對材料顯微結構之影響 69 4-1-6 玻璃添加量對材料介電性質之影響 70 4-2、Y相鐵氧磁體系統 81 4-2-1玻璃添加量對材料結晶行為之影響 81 4-2-2玻璃助燒結劑與Co2Y潤濕角與介面反應分析 84 4-2-3 玻璃添加量對材料緻密化行為之影響 88 4-2-4 玻璃添加量對材料顯微結構之影響 91 4-2-5 玻璃添加量對材料介電性質與磁性質之影響 93 4-3、陶瓷複合材料 100 4-3-1 玻璃添加量對陶瓷複合材料性質之影響 100 4-3-1-1 玻璃添加量對材料結晶行為之影響 100 4-3-1-2 玻璃添加量對材料緻密化行為之影響 103 4-3-1-3 玻璃添加量對材料顯微結構之影響 108 4-3-1-4玻璃添加量對材料介電性質與磁性質之影響 112 4-3-1-5 NdBa2Fe3O7.995顯微結構、介電性質與磁性質分析 114 4-3-2 不同混合比例對陶瓷複合材料性質之影響 123 4-3-2-1 不同混合比例對材料結晶行為之影響 123 4-3-2-2 不同混合比例對材料緻密化行為之影響 126 4-3-2-3 不同混合比例對材料顯微結構之影響 131 4-3-2-4不同混合比例對材料介電性質與磁性質之影響 135 4-3-4 共燒行為分析 142 4-3-3-1 共燒匹配性分析 142 4-3-3-2 共燒之介面反應分析 145 第五章、結論 148 參考文獻 149

    [1] R. Ubic, I. M. Reaney, and W. E. Lee, “Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2(Ln=lanthanide cation),” J. Solid State Chem., 28, 158, (1981)
    [2] R. L. Bolton,“Temperature compensation ceramic capacitors in the system barium-rare earth oxide titania,”Ph.D Thesis. The University of Illinois, (1968)
    [3] L. P. Mudroliubova, B. A. Rotenberg, N. F. Kartenko, A. N. Borsch, V. G. Prohvatilova, V. G. Kostikov, P. Yu, and N. P. Ivanova,“Barium Lanthanoid Tetratitanate,”USSA Certificate of Recongnition., (1977).
    [4] D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov,“Ceramic and dielectric properties of selected compositions in BaO-TiO2-R2O3 system,”Ber. Deut. Keram. Ges.,55, 158, (1978)
    [5] D. Kolar, S. Gaberscek, B. Volavsek, H. S. Parker, and R. S. Roth,“synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14 and Nd4Ti5O24,”J. Solid State Chem., 38, 158, (1981)
    [6] D. Kolar, S. Gaberscek, Z. Stadler, and D. Suvorov.“High stability, low loss dielectric in the system BaO-Nd2O3-TiO2-Bi2O3,”Ferroelectrics. 27, 269, (1988)
    [7] E. S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin. And V. S. Kostomarov,“The complex barium and lanthanum titanates,”Russ. J. Inorg. Chem., 25, 945, (1980)
    [8] M. Gens, M. B. Varfolomeev, V. S. Kostomarov, and S. S. Korovin,“Crystal-chemical and electrophysical properties of complex titanates of barium and the lanthanides,”Russ. J. Inorg. Chem., 26, 896, (1981)
    [9] S. M. Polyakov, E. I. Gindin, V. G. Prokhvatilav, and S. V. Shtelmakh,“Composition and structure of barium lanthanide tetratitanate”Russ. J. Inorg. Chem., 28, 1686, (1983)
    [10] K. Fukuda, I. Fijui, R. Kitoh, Y. Cho, and I. Awai,“Influence of rare earth ions on BaO-TiO2-rare earth oxide ceramic for microwave applications,”Jan. J. Appl. Phys., 32, 1712, (1993)
    [11] T. Jaakola, A. Unsimaki, R. Rautioahu, and S. Leppauvuori,“Matrix phase in ceramic with composition near BaO-Nd2O3-5TiO2,”J. Am. Ceram. Soc., 69, C234, (1986)
    [12] X. M. Chen, Y. Suzuki, and N. sato.“Microstructure and microwave dielectric characterization of ceramic with the composition BaO-Nd2O3-5TiO2,”J. Mater. Sci.: Mater. Electron. 6, 10, (1995)
    [13] E. A. Nenashev, N. M. Siderova, N. F. Kastenko, L. R. Mudrolubova, B. A. Rotenberg, and B. B. Gluskhevoa.“Compounds of the system BaLn2O4-TiO2(Ln=Nd, La),”Neorg. Mater. 21, 1524, (1985)
    [14] H. Ohsato.“Science of tungsten bronze type like Ba6-3xR8+2xTi18O54(R= rare earth) microwave dielectric solid solution,”J. Eur. Cerm. Soc. 21, 2703, (2001)
    [15] T. Negas and P. K. Davies.“Influence of chemistry and processing on the electrical properties of Ba6-3xLn8+2xTi18O54 solid solutions,”Materials and processes for wireless Communicatin. T. Negas and P. K. Davies.(Eds), American Ceramic Society, Westerville, pp.179-196,(1995)
    [16] R. Ubic, I. M. reaney, and W. E. Lee,“Microwave dielectric solid solution in system Bao-Ln2O3-TiO2(Ln=lanthanide cation),”Int. Mater. Rev. 43,205, (1998)
    [17] R. G. Matveeva, M. B. Varfolomeeva, and L. S. Il yushenko,“Refinement of the composition and crystal structure of Ba3.75Pr9.5Ti18O54,”Russ. J. Inorg. Chem., 28, 17, (1984)
    [18] K. Wakino. K. Minai, and H. Tamura,“Microwave characteristics of (Zr, Sn)TiO4 and BaO-Nd2O3-TiO2 dielectric resonators,”J. Am. Ceram. Soc., 27, 1405, (1987)
    [19] R. S. Roth, F. Beath, A. Antorow, P. K. Davies, J. L. Soubeyronx, and M. Zucchi,“Structure of stoichiometric solid solution Ba2RE4(Bax+RE2/3-2/3x)Ti9O27 (R=Sm, Nd),”Abstract 07.9-9.14th IUCr congress Aug12-20, 1987 Perth, Australia Act Cryst., A43 C138-C139, (1987)
    [20] H. Ohsato, M. Mizuta, T. Okuda, and S. Nishigaki,“Crystal structure and microwave dielectric properties of tungsten bronze type Ba6-3xR8+2xTi18O54(R=La, Pr, Nd,and Sm) solid solution,”Proc. XVII Conf. App. Crystallogr, World Scientific Publishers Singapore, pp.440-447, (1998)
    [21] D. Kolar, S. Gabecek, and D. Suvorov,“Structure and dielectric properties of pervoskite like rare earth titanates,”3rd Euroceramics. P. Duran and J. F. Fernnandez (Eds), Vol. 2, Faenza Editrice, Iberica. S. L. pp.229-234, (1993)
    [22] H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, and S. Suzuki.“Formation of solid solution of new tungsten bronze type microwave dielectric compounds Ba6-3xR8+2xTi18O54(R-Nd, Sm 0≦x≦1),”Jpn. J. Appl. Phys., 32, 437, (1993)
    [23] M. B. Varfolomeeva, A. S. Miranov, V. S. Kostamarov, and L. A. Golubchova.“The synthesis and homogrnrity ranges of the phase Ba6-3xLn8+2xTi18O54,” Russ. J. Inorg. Chem., 33, 607, (1984)
    [24] K. M. Cruickshank, X. Jing, G. Wood, E. E. Lachowski, and A. R. West, “Barium neodymium titanate electrocreamics: phase equilibria studies of Ba6-3xNd8+2xTi18O54 solid solution,” J. Am. Cream. Soc., 79 [6] 1605 (1996)
    [25] H. Ohsato.“Origins of high Q on microwave tungstenbronze-type like
    Ba6−3xR8+2xTi18O54 (R: rare earth) dielectrics based on the atomic arrangements,”J. Eur. Cerm. Soc. 21, 2703, (2001)
    [26] 山口 喬,聊田博明,岡本祥一,近桂一郎, “Magnetic materials ceramics.” (1985)
    [27] S. Chikazumi and C. D. Graham, Jr,“Physics of Ferromagnetism,”2nded.,
    Oxford University Press Inc., New York,1997
    [28] M. D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley δ Sons, New York(1976)
    [29] R. Ubic, I. M. Reaney, and W. E. Lee, “Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2(Ln=lanthanide cation),” J. Solid State Chem., 28, 158, (1981)
    [30] M.D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley δ Sons, New York (1976)
    [31] R. S. Tebble and D. J. Craik, Magnetic materials, Wiley-Interscience, New York (1969)
    [32] 利嘉翔,高頻用鎳錳鐵氧磁體的開發研究,大同大學材料工程研究所
    碩士論文,2004
    [33] N.Spaldin, Magneticmaterials,“fundamentals and applications,”2ed Edition, Camberidge, New York (2011)
    [34] Y. Ota, K. I. Kakimoto, H. Ohsato, and T.Okawa,“Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition,”J. Eur. Ceram. Soc., 24, 1755, (2004)
    [35] J. M. Yoon, J. A. Lee, J. H. Lee, J. J. Kim, and S. H. Cho,“Sintering behavior and microeave dielectric characteristics of BaO-Sm2O3-4TiO2 ceramics with B2O3 and Ba2B2O4 addition, ”J. Eur. Ceram. Soc., 26, 2129, (2006)
    [36] D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov,“High stability, low loss dielectric properties of selected compositions in BaO-TiO2-Nd2O3,”Ferroelectrics., 27, 269, (1988)
    [37] J. M. Durand and J. P. Boilot,“Microwave dielectric characteristics of
    BaO-Bi2O3-TiO2-Nd2O3 dielectric resonators,”J. Mater. Sci. Lett., 6, 134,1987
    [38] J. S. Kim, C. Cheon, T. R. Park, and H. S. Shim,“Dielectric properties and
    crystal structure of Ba6-3x(NdM)8+2xTi18O54(M=La,Bi,Y) microwave
    ceramics,”J. Mater. Sci., 35, 1487, (2000)
    [39] W. Wersing,“Microwave ceramics for resonators and filters,”Curr. Opin. Solid State Mater. Sci., 1, 715, (1996)
    [40] T. Okawa, M. Imaeda, and H. Ohaato,“Microwave dielectric properties of Bi added Ba4Nd9+1/3Ti18O54 solid solution,”Jpn. J. Appl. Phys., 39, 5645, (2000)
    [41] D. Suvorov, M. Valant, and D. Kola,“Chemistry and microwave properties of Bi2O3 doped Ba4.5Nd9OTi18O54 based ceramic,”In:Materials and processes foe wireless
    [42] H. Osato, A. Komura, Y. Takagi, SNishigaki, and T. Okuda,“Microwave dielectric properties and sintering of Ba6-3xR8+2xTi18O54(R=Sm, X=2/3) solid solution with added rutile,”Jpn. J. Appl. Phys., 37, 5357, (1998)
    [43] Y. Xu, G. Huang, and Y, He,“Sol-gel preparation of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics,”Ceram. Int., 31 ,21 , (2005)
    [44] Y. Zheng, X. Zhao, W. Lei and S. Wang,“Effects of Bi2O3 addition on the microwave dielectric characteristics of Ba6-3x(Sm0.2Nd0.8)8+2xTi18O54
    (x=2/3) ceramics,”Mater. Lett., 60, 459, (2005)
    [45] Y. Ota, K. I. Kakimoto, H. Ohsata, and T. Okawa,“Low temperature sintering of Ba6-3xSm8+2xTi18O54 ceramics by Bi2O3 and GeO2 addition,”J. Eur. Ceram., 24, 1755, (2004)
    [46] A.S. Sefat, G. Anow, M. Y. Wu, G. A. Bottom, and J. E. Gredan.“High resolution EELS study of the vacancy doped metal/insulator system Nd1-xTiO3 x=0-0.33,”J. Solid state chem., 178, 1008, (2005)
    [47] L. E. Chang, B. S. Chiou, and W. H. Lee.“Effect of glass additions on the sintering behavior and electrical microwave properties of BaO-Nd2O3-Sm2O3-TiO2 ceramics,”Jpn. j. Appl. Phy., 37, 6048, (2004)
    [48] C. H. Lu. and Y. H. Huang.“Densifaction and dielectric properties of barium neodymium titanate oxide ceramic,”Mater. Sci. Eng. B., 98, 33, (2003)
    [49] L. C. Chang and B. S. Chiou.“Electrical behavior of BaO-Nd2O3-Sm2O3-TiO2 with glass/oxide additives analysed by impedance spectroscopy,”J. Electroceram., 15, 75, (2005)
    [50] N.Santha, M. T. Sebastian, V. George, and J. Philip.“Microwave dielectric and elastic propertires of glass added Ba6-3xR8+2xTi18O54 (x=2/3),”Mater. Chem. Phy., 100, 423, (2006)
    [51] Y. J. Choi, J. H. Park, S. Nahm, and J. G. Park,“Middle-and high-permittibity dielectric compositions for low-temperature co-fired ceramics,”J. Eur. Ceram. Soc., 27, 2017, (2007)
    [52] I.S. Cho, D.W. Kim, J.R. Kim, and K.S. Hong, “Low-temperature sintering and microwave dielectric properties of BaO•(Nd1−xBix)2O3•4TiO2 by the glass additions,” Ceram. Inter., 30, 1181, (2004)
    [53] J. H. Park, Y.J. Choi, and J. G. Park,“Low-fire dielectric compositions with permittivity 20-60 for LTCC applications, Mater. Chem. Phys., 88, 308. (2004)
    [54] C.C. Cheng, T.E. Hsieh, and I.N. Lin, “Microwave dielectric properties of glass-ceramic composites for low temperature co-fire ceramics,” J. Eurp. Ceram. Soc., 23, 2553, (2003)
    [55] O. Dernovsek, A. Maeini, G. Preu, W. Wersing, M. Eberstein, and W. A. Schiller, “LTCC glass ceramic composites for microwave application,”J. Eur. Ceram. Soc., 21, 1693, (2001)
    [56] B. H. Jung, S. J. Hwang, and H. S. Kim,“Glass-ceramic gor low temperature co-fired dielectric ceramic materials based on La2O3-B2O3-TiO2 glass with BNT ceramic,”J. Eur. Ceram. Soc., 25, 3187, (2005)
    [57] Y. Bai , J. Zhou, Z. Gui, Z. Yue, L. Li, “Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper,” Mater. Sci. Eng.,B99, 266, (2002)
    [58] Y. Bai, J. Zhou, Z.Gui, L. Li, “Magnetic properties of Cu, Zn-modified Co2Y hexaferrites,” J. Magn. Magn. Mater., 246, 140, (2002)
    [59] Y. Bai, J. Zhou, B.Li, Z. Gui, L. Li, “The effect of Bi substitution on phase formation and low temperature sintering of Y-type hexagonal ferrite,” J. Electroceram., 21, 349, (2007)
    [60] Y. Bai, J. Zhou, Z. Gui, L. Li, L.Qiao, “The physics properties of Bi-Zn codoped Y-type hexagonal ferrite,” J. Alloys and compounds., 450, 412, (2006)
    [61] G. F. M. Pires Junior, H. O. Rodrigues, J. S. Almeida, E. O. Sancho, J. C. Goes, M. M. Costa, J. C. Denardin, A. S. B. Sombra, “Study of the dielectric and magnetic properties of Co2Y, Y-type hexaferrite(Ba2Co2Fe12O22) added with PbO and Bi2O3 in the RF frequency range,” J. Alloys. Compd., 493, 326, (2010)
    [62] X.Wang, L. Li, S. Shu, Z. Yue, Z. Ma, J.Zhou,“Low-temperature sintering of Z-type hexaferrite for application in MLCIs,” Mater. Lett., 55, 8, 2002
    [63] S. Kracunovska, J. Topfer,“On the thermal stability of Co2Z hexagonal ferrites for low-temperature ceramic cofiring technologies,” J. Magn. Magn. Mater., 320, 1370, (2008)
    [64] C. Herring, “Effect of Change of Scale on Sintering Phenomena,” J. Appl. Phys., 21, 301, (1950)
    [65] K. S. Hwang, Phd Thesis,“Rensselaer Ploytechnic in Troy”(1984)
    [66] Randall M. German., “Liquid phase sintering” New York, (1985)
    [67] R. J. Stokes, D. F. Evans, “Fundamentals of Interfacial Engineering” New York, (1985)
    [68] A. W. Adamson, “Physical Chemistry of Surfaces 2nd ed, I” New York, (1967)
    [69] Myers. D, “Surface, Interfaces, and Colloids: Principles and Applications” New York,(1999)
    [70] Y. Ogata, Y. Hayashi, and Y. Kojima, “EMI filter with a ceramicmaterial havint a chemical reaction inhibiting component,” US patent 5,592,134., Jan. 7, (1997)
    [71] Z. Yue, S. Chen, X. Qi, Z. Gui, and L. Li, “Preparation electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics,” Journal of alloys and compounds., 375, 243, (2004)
    [72] H.W. Zhang, H. Zhong, B.Y. Liu, and Y.Y. Liu, “Electromagnetic properties of a new ferrite-ceramic low-temperature cocalcined (LTCC) composite materials,” IEEE transactions on magnetic., 41, 10, (2005)
    [73] T.M. Peng, T.T. Hsu, and J.H. Jean, “Low-fire processing andproperties of ferrite+dielectric ceramic composite,” J. Am. Ceram.Soc., 89, 2822, (2006)
    [74] R.T. Hsu, T.M. Peng, and J.H. Jean, “Electrical properties of low-fire
    ferroelectric+ferromagnetic ceramic composite,” Jpn. J. Appl. Phys.,
    45, 5841, (2006)
    [75] J.C. Chang and J. H. Jean,“Camber Development During the Cofiring of Bi-Layer Glass-Based Dielectric Laminate,”J. Am. Ceram. Soc., 88, 1165, (2005)
    [76] Y. H. Koh, A. Knapp, and J. W. Halloran, “Co-Firing of Spatially Varying Dielectric Ca–Mg–Silicate and Bi–Ba–Nd–Titanate Composite,”J. Am. Ceram. Soc., 88, 2690, (2005)
    [77] P.Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, II:Viscoelastic Stress Computation,” J. Am. Ceram. Soc., 80, 1929, (1997)
    [78] L. Chen, X. Wang, B. Qiao, Xi. Deng, Z. Gui, and L. Li, “Electrode–Ceramic Inter-Diffusion of Ba(Ti,Zr)O3-Based Y5V MLCCs with Ni Electrodes,” J. Am. Ceram. Soc., 89, 3734, (2006)
    [79] S. J. Jeong, D.-S. Lee ,J.-S. Song, H. k. Lee, “Effect of nano-sized TiO2 powder addition on characteristics of silver–palladium electrodes.” J Mater Sci., 42, 604, (2007)
    [80] T. Cheng,and R, Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer,” J. Am. Ceram. Soc., 72 , 1649,
    (1989)
    [81] O. Guillon , S. Kraub, J, R. odel, “Influence of thickness on the constrained sintering of alumina films,” J. .Europ. Ceram. Soc., 27, 2623, (2007)
    [82] P.Wheless and D. Kajfez,“The use of higher resonant modes in measuring the dielectric constant od dielectric resonators,”IEEE MTT-S, Symp. Dig., 1, 473, (1985)
    [83] Y. Kobayashi and N. katoh,“Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,”IEEE. Tran. Microw.Theory Tech., MTT-33, 586, (1985)
    [84] Y. Kobayashi and S. Tanaka, Resonant modes of dielectric resonator short-circuited at both ends by parallel conducting plates,”EEE. Tran. Microw.Theory Tech., MTT-28, 1077, (1980)
    [85] 何承恩,低損耗微波介電材料(Mg1-xNix)2TiO4在無線通訊元件之應用, 國立成功大學電機工程研究所碩士論文,2010
    [86] S. Solomon, N. Santha, I.N. Jawahar, H. Sreemoolanadhan, and M. T.Sebastian, “Tailoring the microwave dielectric properties of BaRe2Ti4O12 an BaRe2Ti5O14 ceramics by compositional variations,” J. Mater. Sci., 11, 595, (2000)
    [87] Y.J. Wu, X.M. Chen, “Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics,” J. Eur. Ceram. Soc., 19, 1123, (1999)
    [88] O. S. Kwon, S.-H. Hong, J. H. Lee, U. J. Chung , D. Y. Kim,N.M. Hwang“Microstructural evolution during sintering of TiO2/SiO2-doped alumina: mechanism of anisotropic abnormal grain growth,”Acta Mat., 50, 4865,(2002)
    [89] R. Ubic, I.M. Reaney, and W.E. Lee, “Microwave dielectric solid-solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation),” Inter. Mater. Reviews , 43, 205, (1998)
    [90] J.S. Sun, C.C. Wei, and L. Wu, “Dielectric properties of (Ba,Sr)O-(Sm, La)2O3-TiO2 ceramics at microwave frequencies,” J. Mater. Scien. 27, 5818, (1992)
    [91] A. Fujiwara_, M. Tada, T. Nakagawa, M. Abe “Permeability and electric resistivity of spin-sprayed Zn ferrite films for high-frequency device applications,” J. Magn. Magn. Mater., 320, 67, (2008)
    [92] 陳泰豪,低溫共燒型介電-磁性陶瓷複合材料, 國立成功大學資源工程研究所碩士論文,2007

    下載圖示 校內:2016-08-27公開
    校外:2016-08-27公開
    QR CODE