簡易檢索 / 詳目顯示

研究生: 李定禹
Lee, Ting-Yu
論文名稱: 車銑複合機之C軸組裝誤差與運動誤差同步量測與驗證
Synchronous Measurement and Verification of Position-Independent Geometric Errors and Position-Dependent Geometric Errors in C-Axis on Mill-Turn Machine Tools
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 五軸工具機旋轉軸幾何誤差組裝誤差運動誤差觸發式測頭車銑複合機
外文關鍵詞: Five-axis machine tools, Rotary axis, Geometric errors, Position-independent geometric errors, Position-dependent geometric errors, Touch-trigger probes, Mill-turn machine tool
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將針對五軸工具機的旋轉軸提出一套幾何誤差之四項組裝誤差與兩項運動誤差同步量測系統,此系統使用之量測儀器為觸發式測頭並搭配兩顆標準校正球,利用此校正球之標準特性回推工具機誤差。研究特點為幾何誤差之組裝誤差與運動誤差之軸向誤差與定位誤差同步量測,藉由一次實驗直接解析出這兩大類誤差項。預期能改善以往研究將組裝誤差與運動誤差分開量測之缺點。
    實驗載具為車銑複合機,一台具備可切換車床及銑床模式之工具機,研究將針對其C軸分析其幾何誤差。計算過程包括機台之誤差數學模型建立,推導正逆向運動學及建立誤差分析方程式,並且透過最小平方法對線性過度定義系統解出其變數,此系統變數即為幾何誤差。解出誤差值前先針對整套數學演算法進行模擬以確保計算過程之準確性。模擬結果也證實本量測方法之可行性。
    實驗過程會進行觸發式測頭的校正程序,校正完畢便可開始量測兩顆標準校正球之機械座標值。誤差分析方程式藉由程式撰寫於電腦端,並將實驗量測取得的校正球數據代入程式計算出組裝誤差與運動誤差。量測完成後再透過實際切削想更進一步驗證,但切削驗證的結果不慎理想,判斷切削的結果以及討論切削驗證不理想的原因。

    This thesis proposes a synchronous measurement system for four position-independent geometric errors (PIGEs) and two position-dependent geometric errors (PDGEs) for the rotary axis in five-axis machine tools. The measuring instrument I use in this system is a touch-trigger probes and with two standard calibration spheres. The feature of the research is the simultaneous measurement of PIGEs and axial error, angular positioning error of PDGEs and these two types of errors can be directly analyzed through only one measuring process. It is expected to improve the shortcomings of previous studies that separately measure PIGEs and PDGEs.

    The machine I use to conduct experiments is a mill-turn machine tool. This study will analyze its geometric errors of C-axis. The process of calculation includes the establishment of the mathematical model of the machine and establish the geometric error equations. Using the least squares method to solve the linear overdetermined system and calculate the value of the geometric errors. Before solving the geometric errors, ensuring the accuracy of the calculated process by using the simulated method. The simulation results also confirm the feasibility of this measurement system. Using the data obtained from the experiment and calculate the geometric error in machine tools. After the measurement, I use the cutting verification to verify the measurement method. The result of the cutting verification is not really good. In this paper, I also discuss the reasons why the result of the cutting verification is not satisfactory.

    摘要 I ABSTRACT II 誌謝 VIII 目錄 X 表目錄 XII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 5 1-3 論文架構 8 第二章 文獻回顧 9 2-1 五軸工具機三大構型 9 2-2 五軸工具機之誤差源 12 2-3 幾何誤差之定義與介紹 16 2-4 過去之誤差量測文獻回顧 22 第三章 系統架構與量測原理 28 3-1 齊次座標轉換矩陣(Homogeneous Transformation Matrix, HTM) 28 3-2 實驗之五軸工具機介紹 34 3-3 量測儀器介紹 37 3-4 量測系統的架設評估 42 3-5 量測目標及原理 45 3-5-1 標準校正球列式方法一 47 3-5-2 標準校正球列式方法二 48 第四章 幾何誤差模型建立 50 4-1車銑複合機幾何誤差模型建立(正向運動學推導) 50 4-2逆向運動學推導 59 4-3幾何誤差變數假設方式 62 第五章 量測方法與誤差計算結果 63 5-1量測方法與流程 63 5-2第一種誤差計算之方法 68 5-2-1第一種誤差計算方法之模擬 73 5-2-2第一種誤差計算方法結果 75 5-3第二種誤差計算之方法 79 5-3-1第二種誤差計算方法之模擬 80 5-3-2第二種誤差計算方法結果 82 第六章 誤差補償與驗證 87 6-1誤差補償與驗證方法 87 6-1-1驗證方法一 87 6-1-2驗證方法二 88 6-2切削驗證過程 90 6-3三次元量床(CMM)量測之結果 92 6-3-1驗證方法一結果 93 6-3-2驗證方法二結果 94 第七章 結論與未來規劃 95 7-1結論 95 7-2未來規劃 95 參考文獻 97

    [1] ISO 230-1:2012, Test code for machine tools - Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions, 2012.
    [2] ISO 230-2:2014, Test code for machine tools - Part 2: Determination of accuracy and repeatability of positioning of numerically controlled axes, 2014.
    [3] ISO 230-3:2020, Test code for machine tools — Part 3: Determination of thermal effects, 2020.
    [4] ISO 230-4:2005, Test code for machine tools — Part 4: Circular tests for numerically controlled machine tools, 2005.
    [5] ISO 230-5:2000, Test code for machine tools — Part 5: Determination of the noise emission, 2000.
    [6] ISO 230-6:2002, Test code for machine tools — Part 6: Determination of positioning accuracy on body and face diagonals (Diagonal displacement tests), 2002.
    [7] ISO 230-7:2015, Test code for machine tools — Geometric accuracy of axes of rotation, 2015.
    [8] A. C. Okafor and Y. M. Ertekin, “Vertical machining center accuracy characterization using laser interferometer: part 1. Linear positional errors,” Journal of Materials Processing Technology, vol. 105, no. 3, pp. 394-406, 2000.
    [9] C. Liu, S. Xiang, C. Lu, C. Wu, Z. Du, and J. Yang, “Dynamic and static error identification and separation method for three-axis CNC machine tools based on feature workpiece cutting,” The International Journal of Advanced Manufacturing Technology, vol. 107, no. 5-6, pp. 2227-2238, 2020.
    [10] R. Ramesh, M. Mannan, and A. Poo, “Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors,” International Journal of Machine Tools and Manufacture, vol. 40, no. 9, pp. 1235-1256, 2000.
    [11] S. Kumar, P. Vichare, A. Nassehi, V. Dhokia, and S. T. Newman, “Design and implementation of machine tool static error feedback model,” in 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009: IEEE, pp. 660-664.
    [12] D. Lyu, Q. Liu, H. Liu, and W. Zhao, “Dynamic error of CNC machine tools: a state-of-the-art review,” The International Journal of Advanced Manufacturing Technology, vol. 106, no. 5-6, pp. 1869-1891, 2019.
    [13] 廖明毅, “以DBB量測及校正五軸工具機之幾何誤差,” 國立清華大學動力機械工程學系, 碩士論文, 2002.
    [14] V. Kiridena and P. Ferreira, “Kinematic modeling of quasistatic errors of three-axis machining centers,” International Journal of Machine Tools and Manufacture, vol. 34, no. 1, pp. 85-100, 1994.
    [15] S. Ibaraki, T. Iritani, and T. Matsushita, “Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe,” International Journal of Machine Tools and Manufacture, vol. 58, pp. 44-53, 2012.
    [16] S. Ibaraki, H. Inui, C. Hong, S. Nishikawa, and M. Shimoike, “On-machine identification of rotary axis location errors under thermal influence by spindle rotation,” Precision Engineering, vol. 55, pp. 42-47, 2019.
    [17] Y. Liu, M. Wan, W.-J. Xing, and W.-H. Zhang, “Identification of position independent geometric errors of rotary axes for five-axis machine tools with structural restrictions,” Robotics and Computer-Integrated Manufacturing, vol. 53, pp. 45-57, 2018.
    [18] S. Xiang, J. Yang, and Y. Zhang, “Using a double ball bar to identify position-independent geometric errors on the rotary axes of five-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 70, no. 9-12, pp. 2071-2082, 2013.
    [19] H. Yang, X. Huang, S. Ding, C. Yu, and Y. Yang, “Identification and compensation of 11 position-independent geometric errors on five-axis machine tools with a tilting head,” The International Journal of Advanced Manufacturing Technology, vol. 94, no. 1-4, pp. 533-544, 2017.
    [20] S.-H. Yang and K.-I. Lee, “Identification of 11 position-independent geometric errors of a five-axis machine tool using 3D geometric sensitivity analysis,” The International Journal of Advanced Manufacturing Technology, vol. 113, no. 11-12, pp. 3271-3282, 2021.
    [21] Q. Li, W. Wang, J. Zhang, and H. Li, “All position-dependent geometric error identification for rotary axes of five-axis machine tool using double ball bar,” The International Journal of Advanced Manufacturing Technology, vol. 110, no. 5-6, pp. 1351-1366, 2020.
    [22] S. Ibaraki, T. Iritani, and T. Matsushita, “Error map construction for rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe,” International Journal of Machine Tools and Manufacture, vol. 68, pp. 21-29, 2013.
    [23] S. Xiang and J. Yang, “Using a double ball bar to measure 10 position-dependent geometric errors for rotary axes on five-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 75, no. 1-4, pp. 559-572, 2014.
    [24] Positioning accuracy of rotary axes: a key factor in 5-axis machining, HEIDENHAIN
    [25] Li Jiakun, Feng Qibo, Bao Chuanchen, Yang Jing, and Zhao Bintao, “Measurement method and error analysis for angular positioning error of rotary axis,” Infrared and Laser Engineering, vol. 48, no. 2, 2019.
    [26] A. Talyan, A. Manglik, R. Hussain, A. Singh, T. Varshney, and B. K. Jha, “Error Compensation and Accuracy Improvement in Five-Axis CNC Machine Tool,” International Journal of Advanced Mechanical Engineering, vol. 4, pp. 129-138, 2014.
    [27] W. Tian, W. Gao, W. Chang, and Y. Nie, “Error Modeling and Sensitivity Analysis of a Five-Axis Machine Tool,” Mathematical Problems in Engineering, vol. 2014, pp. 1-8, 2014.
    [28] J. Yang and Y. Altintas, “Generalized kinematics of five-axis serial machines with non-singular tool path generation,” International Journal of Machine Tools and Manufacture, vol. 75, pp. 119-132, 2013.
    [29] X. Jiang, “Characterising geometric errors in rotary axes of 5-axis machine tools,” University of Birmingham, 2015.
    [30] D. Chen, S. Zhou, L. Dong, and J. Fan, “An Investigation into Error Source Identification of Machine Tools Based on Time-Frequency Feature Extraction,” Shock and Vibration, vol. 2016, pp. 1-10, 2016.
    [31] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines—An update,” CIRP Annals, vol. 57, no. 2, pp. 660-675, 2008.
    [32] 劉宗翰, “以6D雷射干涉儀進行三軸CNC工具機的誤差量測,” 中華大學機械與航太工程研究所, 碩士論文, 2004.
    [33] P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, and W. Pril, “Design for Precision: Current Status and Trends,” CIRP Annals, vol. 47, no. 2, pp. 557-586, 1998.
    [34] E. Uhlmann, M. Saoji, and B. Peukert, “Utilization of Thermal Energy to Compensate Quasi-static Deformations in Modular Machine Tool Frames,” Procedia CIRP, vol. 40, pp. 1-6, 2016.
    [35] F. Huo and A.-N. Poo, “Precision contouring control of machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 64, no. 1-4, pp. 319-333, 2012.
    [36] X. Zuo, B. Li, J. Yang, and X. Jiang, “Integrated Geometric Error Compensation of Machining Processes on CNC Machine Tool,” Procedia CIRP, vol. 8, pp. 135-140, 2013.
    [37] S. Guo, S. Tang, and D. Zhang, “A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis,” Complexity, vol. 2019, pp. 1-21, 2019.
    [38] J. Lin and Z. Li, “Geometric Error Modeling for CNC Machine Tools Using Differential Transformation,” in 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019: IEEE, pp. 1118-1122.
    [39] G. A. Chang et al., “Research on geometric error measurement system of machining center BV75 based on laser interferometer,” MATEC Web of Conferences, vol. 40, 2016.
    [40] H. L. Liu, M. Rasheed, and H. H. Younis, “A line measurement method for geometric error measurement of the vertical machining center,” SN Applied Sciences, vol. 1, no. 4, 2019.
    [41] S. M. Merghache and A. Hamdi, “Numerical evaluation of geometrical errors of three-axes CNC machine tool due to cutting forces—case: milling,” The International Journal of Advanced Manufacturing Technology, vol. 111, no. 5-6, pp. 1683-1705, 2020.
    [42] H. Wang, T. Li, Y. Cai, and H. Wang, “Thermal Error Modeling of the CNC Machine Tool Based on Data Fusion Method of Kalman Filter,” Mathematical Problems in Engineering, vol. 2017, pp. 1-10, 2017.
    [43] J. Yin, M. Li, and F. Y. Pan, “Modeling Quasi-Static Errors in a Five-Axis Gantry Machine Tool,” Applied Mechanics and Materials, vol. 152-154, pp. 781-787, 2012.
    [44] Z. Pandilov and V. Dukovski, “Survey of the dominant error types at parallel kinematics machine tools,” International Journal of Engineering, vol. 8, no. 1, pp. 193-196, 2010.
    [45] A. P. Longstaff, S. Fletcher, S. Parkinson, and A. Myers, “The role of measurement and modelling of machine tools in improving product quality,” International Journal of Metrology and Quality Engineering, vol. 4, no. 3, pp. 177-184, 2014.
    [46] G. Shao and W. Stann, “Uncertainties for Machine Tool Modeling,” NIST AMS, pp. 100-36, 2020.
    [47] L. Andolfatto, S. Lavernhe, and J. R. R. Mayer, “Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool,” International Journal of Machine Tools and Manufacture, vol. 51, no. 10-11, pp. 787-796, 2011.
    [48] D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics Error Compensation for a Surface Measurement Probe on an Ultra-Precision Turning Machine,” Micromachines (Basel), vol. 9, no. 7, Jul 2 2018.
    [49] Q. Xiong and Q. Zhou, “Development Trend of NC Machining Accuracy Control Technology for Aeronautical Structural Parts,” World Journal of Engineering and Technology, vol. 08, no. 03, pp. 266-279, 2020.
    [50] H. Shen, J. Fu, Y. He, and X. Yao, “On-line Asynchronous Compensation Methods for static/quasi-static error implemented on CNC machine tools,” International Journal of Machine Tools and Manufacture, vol. 60, pp. 14-26, 2012.
    [51] M. Holub, P. Blecha, F. Bradac, T. Marek, and Z. Zak, “Geometric Errors Compensation of Cnc Machine Tool,” MM Science Journal, vol. 2016, no. 06, pp. 1602-1607, 2016.
    [52] J.-R. Chen, B.-L. Ho, H.-W. Lee, S.-P. Pan, and T.-H. Hsieh, “Geometric Error Measurement of Machine Tools Using Autotracking Laser Interferometer,” Sensors and Materials, vol. 30, no. 11, 2018.
    [53] F. Viprey, H. Nouira, S. Lavernhe, and C. Tournier, “Modelling and characterisation of geometric errors on 5-axis machine-tool,” Mechanics & Industry, vol. 20, no. 6, p. 605, 2019.
    [54] Y. Abbaszadeh-Mir, J. R. R. Mayer, G. Cloutier, and C. Fortin, “Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar,” International Journal of Production Research, vol. 40, no. 18, pp. 4781-4797, 2002.
    [55] K. Xu, G. Li, Z. Li, X. Dong, and C. Xia, “A general identification method for position-dependent geometric errors of rotary axis with single-axis driven,” The International Journal of Advanced Manufacturing Technology, vol. 112, no. 3-4, pp. 1171-1191, 2021.
    [56] J. H. Jeong, G. Khim, J. S. Oh, and S.-C. Chung, “Method for measuring location errors using a touch trigger probe on four-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 99, no. 1-4, pp. 1003-1012, 2018.
    [57] Y.-T. Chen, P. More, and C.-S. Liu, “Identification and verification of location errors of rotary axes on five-axis machine tools by using a touch-trigger probe and a sphere,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 9-12, pp. 2653-2667, 2018.
    [58] S. Ibaraki, I. Yoshida, and T. Asano, “A machining test to identify rotary axis geometric errors on a five-axis machine tool with a swiveling rotary table for turning operations,” Precision Engineering, vol. 55, pp. 22-32, 2019.
    [59] Z. Li, R. Sato, K. Shirase, and S. Sakamoto, “Study on the influence of geometric errors in rotary axes on cubic-machining test considering the workpiece coordinate system,” Precision Engineering, vol. 71, pp. 36-46, 2021.
    [60] Z. Jiang, X. Tang, X. Zhou, and S. Zheng, “Machining tests for identification of location errors on five-axis machine tools with a tilting head,” The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1-4, pp. 245-254, 2015.
    [61] N. Zimmermann and S. Ibaraki, “Self-calibration of rotary axis and linear axes error motions by an automated on-machine probing test cycle,” The International Journal of Advanced Manufacturing Technology, vol. 107, no. 5-6, pp. 2107-2120, 2020.
    [62] Z. Jiang, S. Bao, X. Zhou, X. Tang, and S. Zheng, “Identification of location errors by a touch-trigger probe on five-axis machine tools with a tilting head,” The International Journal of Advanced Manufacturing Technology, vol. 81, no. 1-4, pp. 149-158, 2015.
    [63] 劉慧娟, “基於五軸機床自帶測頭的旋轉軸靜止誤差測量研究,” 哈爾濱工業大學控制科學與工程, 碩士論文, 2015.
    [64] T. Erkan, J. R. R. Mayer, and Y. Dupont, “Volumetric distortion assessment of a five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact,” Precision Engineering, vol. 35, no. 1, pp. 116-125, 2011.
    [65] S. Sepahi-Boroujeni, J. R. R. Mayer, and F. Khameneifar, “Efficient uncertainty estimation of indirectly measured geometric errors of five-axis machine tools via Monte-Carlo validated GUM framework,” Precision Engineering, vol. 67, pp. 160-171, 2021.
    [66] S. Sepahi-Boroujeni, J. R. R. Mayer, and F. Khameneifar, “Repeatability of on-machine probing by a five-axis machine tool,” International Journal of Machine Tools and Manufacture, vol. 152, 2020.
    [67] H. Hashemiboroujeni, S. Esmaeili Marzdashti, K. Xing, and J. R. R. Mayer, “Five-Axis Machine Tool Coordinate Metrology Evaluation Using the Ball Dome Artefact Before and After Machine Calibration,” Journal of Manufacturing and Materials Processing, vol. 3, no. 1, 2019.
    [68] J. Fan and Y. Zhang, “A novel methodology for predicting and identifying geometric errors of rotary axis in five-axis machine tools,” The International Journal of Advanced Manufacturing Technology, vol. 108, no. 3, pp. 705-719, 2020.
    [69] X. Zhou, Z. Jiang, B. Song, X. Tang, and S. Zheng, “A compensation method for the geometric errors of five-axis machine tools based on the topology relation between axes,” The International Journal of Advanced Manufacturing Technology, vol. 88, no. 5-8, pp. 1993-2007, 2016.
    [70] H. Yang, M. Shen, L. Li, Y. Zhang, Q. Ma, and M. Zhang, “New identification method for computer numerical control geometric errors,” Measurement and Control, 2021.
    [71] K. Xu, G. Li, K. He, and X. Tao, “Identification of position-dependent geometric errors with non-integer exponents for Linear axis using double ball bar,” International Journal of Mechanical Sciences, vol. 170, 2020.
    [72] H.-j. Xia, W.-c. Peng, X.-b. Ouyang, X.-d. Chen, S.-j. Wang, and X. Chen, “Identification of geometric errors of rotary axis on multi-axis machine tool based on kinematic analysis method using double ball bar,” International Journal of Machine Tools and Manufacture, vol. 122, pp. 161-175, 2017.
    [73] C. Xia, S. Wang, S. Wang, C. Ma, and K. Xu, “Geometric error identification and compensation for rotary worktable of gear profile grinding machines based on single-axis motion measurement and actual inverse kinematic model,” Mechanism and Machine Theory, vol. 155, 2021.
    [74] X. Jiang, L. Wang, and C. Liu, “Investigation of rotary axes geometric performance of a five-axis machine tool using a double ball bar through dual axes coordinated motion,” The International Journal of Advanced Manufacturing Technology, vol. 103, no. 9-12, pp. 3943-3952, 2019.
    [75] H. Abdulridha and T. Abaas, “Differential motion analysis of lab-volt R5150 robot system,” Global Journal of Engineering Science and Research Management, vol. 4, no. 10, pp. 152-160, 2017.
    [76] J.-D. Sun, G.-Z. Cao, W.-B. Li, Y.-X. Liang, and S.-D. Huang, “Analytical inverse kinematic solution using the DH method for a 6-DOF robot,” in 2017 14th international conference on ubiquitous robots and ambient intelligence (URAI), 2017: IEEE, pp. 714-716.
    [77] S. Chandra, “DYNAMICS CONTROL AND DH PARAMETRIZATION OF ARISTO XT 6-AXIS ROBOT USING ROBOANALYZER,” Asia Pacific Journals, vol. 2, 2016
    [78] W. Dong, W. Lin, C. Qian, C. Ye, and H. Gao, “GA-based modified DH method calibration modelling for 6-DOFs serial robot,” in 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2016: IEEE, pp. 225-230.
    [79] E. Farah and S. G. Liu, “D-H Parameters and Forward Kinematics Solution for 6D of Surgical Robot,” Applied Mechanics and Materials, vol. 415, pp. 18-22, 2013.
    [80] T. Zhang, Z. Wang, and J. Li, “Geometric error identification and compensation of CNC machine tool based on KGM181,” in 2015 IEEE International Conference on Information and Automation, 2015: IEEE, pp. 2789-2794.
    [81] M.-T. Lin, Y.-T. Lee, W.-Y. Jywe, and J.-A. Chen, “Analysis and compensation of geometric error for five-axis CNC machine tools with titling rotary table,” in 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2011: IEEE, pp. 350-355.
    [82] S. M. Esmaeili, J. R. R. Mayer, M. P. Sanders, J. P. Dahlem, and K. Xing, “Five-Axis Machine Tool Volumetric and Geometric Error Reduction by Indirect Geometric Calibration and Lookup Tables,” Journal of Manufacturing Science and Engineering, vol. 143, no. 7, 2021.
    [83] 劉唐兆, “大型臥式搪銑床之面盤幾何誤差量測與驗證,” 國立成功大學機械工程學系, 碩士論文, 2020.
    [84] Touch Probes TC63-DIGILOG | TC64-DIGILOG, Blum-Novotest
    [85] TC50 | 測頭 | 紅外線傳輸的接觸式量測系統, Blum-Novotest
    [86] Y.-T. Chen, P. More, C.-S. Liu, and C.-C. Cheng, “Identification and compensation of position-dependent geometric errors of rotary axes on five-axis machine tools by using a touch-trigger probe and three spheres,” The International Journal of Advanced Manufacturing Technology, vol. 102, no. 9-12, pp. 3077-3089, 2019.

    無法下載圖示 校內:2026-09-01公開
    校外:2026-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE