| 研究生: |
吳柏儒 Wu, Po-Ju |
|---|---|
| 論文名稱: |
以射頻磁控共濺鍍法製備鎢參雜氧化銦薄膜及其光電元件應用 Investigation of Tungsten-doped Indium Oxide Thin-film Fabricated by RF Co-sputtering System and Their Optoelectronics Applications |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 鎢參雜氧化銦 、光檢測器 、光電晶體 、薄膜電晶體 、同質介面結構 |
| 外文關鍵詞: | tungsten-doped indium oxide (InWO), photodetector, phototransistor, thin film transistor, homojunction structure |
| 相關次數: | 點閱:383 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文為透過射頻磁控共濺鍍法沉積鎢參雜氧化銦薄膜,並深入討論不同製程條件下薄膜之光電特性,同時將其延伸應用於光感測器之主動層與薄膜電晶子之通道層,分析並優化元件之光電特性。實驗的第一步分,以射頻磁控共濺鍍沉積法同時濺鍍氧化銦與氧化鎢兩塊靶材,透過調變氧化鎢靶材之濺鍍功率沉積出不同鎢參雜比例之鎢參雜氧化銦薄膜,同時也透過熱退火製程改變其薄膜特性。接著透過結晶結構、元素組成、表面與縱深分析、光電特性等面向進行分析。原子力顯微鏡的結果顯示出薄膜之表面粗糙度方均根值隨著鎢參雜之比例增加有著先上升後下降的趨勢。電子顯微鏡的影像確認堆疊薄膜結構的實際厚度以及介面品質。X射線繞射光譜的結果顯示出不同參雜比例之鎢參雜氧化銦薄膜均為方鐵錳礦之結構,且其結晶度隨著鎢參雜之比例增加而下降,同時熱退火也會提升其結晶度。吸收光譜顯示出不同參雜比例之鎢參雜氧化銦薄膜在可見光與近紅外光之波段透光率均高於80%,顯示出其為優秀之透明導電氧化物。X射線光電子能譜的結果顯示出隨著鎢參雜之比例增加,鎢參雜氧化銦薄膜中之氧空缺隨之減少因此自由載子數目隨之降低。能量色散X射線能譜確認了實際的鎢參雜重量百分比與原子百分比。霍爾效應量測計算出鎢參雜氧化銦薄膜以及氧化銦的載子濃度。最後利用二次離子質譜儀分析出鎢參雜氧化銦薄膜中主要的離子。
實驗的第二部分,將製備之鎢參雜氧化銦薄膜應用於光偵測器,同時以調變射頻磁控共濺鍍氧化鎢靶財之功率、熱退火之氣體種類作為調變製程的參數,討論其對於光偵測器光電特性之影響。隨著鎢參雜之比例增加,光偵測器之光電流與暗電流明顯下降,其原因為鎢與氧之鍵解離能較大因此能有效減少鎢參雜氧化銦薄膜中之氧空缺數量,雖然能夠提升鎢參雜氧化銦薄膜之穩定性同時卻降低自由載子數目。此外當鎢參雜氧化銦薄膜在氧氣環境下進行熱退火,能夠大幅度提升其光暗電流比使整體特性上升,這是由於在熱退火過程通入氧氣能使晶格重新排列同時再次填補鎢參雜氧化銦薄膜中之氧空缺。就結論而言,透過製成優化尋找最佳的光偵測器製程參數,得出當氧化銦靶材濺鍍功率為80瓦與氧化鎢靶材濺鍍功率為5瓦之鎢參雜氧化銦薄膜,且在氧氣環境下熱退火一小時之鎢參雜氧化銦薄膜光偵測器擁有最佳之特性。光暗電流比大於 106,響應值為 160 A/W,響應拒斥比為 4.71×104。實驗的第三部分,製備出以二氧化矽作為閘極絕緣層與鎢參雜氧化銦薄膜作為通道層之薄膜電晶體,同時以調變射頻磁控共濺鍍氧化鎢靶材之功率、鎢參雜氧化銦薄膜之厚度作為調變製程的參數,討論其對於薄膜電晶體光電特性之影響。當鎢參雜氧化銦薄膜通道層參雜入適當比例之鎢原子時,能夠在維持微小且穩定的關電流下提升其開電流,同時也能提升電晶體之開關速度降低次臨界擺幅,其原因為當鎢原子位於鎢參雜氧化銦薄膜晶格中適當位置時能夠額外提供數個自由載子。除此之外改變鎢參雜氧化銦薄膜通道層將會有效的調變電晶體之臨界電壓,透過調整合適的臨界電壓值能使電晶體之功耗降低使其達到省電的效果。就結論而言,透過改變通道層之製程參數尋找最佳光電特性之電晶體,得出當以氧化銦靶材濺鍍功率為80瓦與氧化鎢靶材濺鍍功率為10瓦沉積厚度為10奈米之鎢參雜氧化銦薄膜作為通道層,薄膜電晶體之特性最佳。室溫下得到場效電子遷移率為 11.6 cm2/V∙s,臨界電壓為 0.28 V,次臨界擺幅為 0.21 V/dec,開關電流比為 1.02×107。接著,將薄膜電晶體延伸應用於光電晶體,在閘極偏壓 -2 V的情況下,響應拒斥比為5.82×108。除此之外,嘗試將汲極偏壓由 8 V降低至 0.1 V,響應拒斥比仍保持 2.34×107,再次印證鎢參雜氧化銦薄膜電晶體優異之省電特性。實驗的第四部分,為了簡化製程之複雜度以及提升上電極與通道層的介面品質,製備出以氧化銦薄膜作為上電極與鎢參雜氧化銦薄膜作為通道層之同質結構薄膜電晶體,透過射頻磁控濺鍍同時沉積通道層與上電極能夠減短製程時間,且得力於通道層與上電極之同質結構,電晶體的部分開關特性提升。除此之外,由於氧化銦薄膜在可見光波段具有高透光性,因此電晶體之透明度明顯增加。就結論而言,透過更換上電極之材料提升電晶體之光電特性,得出使用80瓦之氧化銦靶材沉積電晶體之上電極,薄膜電晶體之特性最穩定。室溫下得到場效電子遷移率為 20.07 cm2/V∙s,臨界電壓為 0.89 V,次臨界擺幅為 0.17 V/dec,開關電流比為1.45×106。再一次,將薄膜電晶體延伸應用於光電晶體,在閘極偏壓 -5 V的情況下,響應拒斥比為 5.34×108。
In this thesis, we deposit tungsten-doped indium oxide (InWO) thin-films by RF magnetron co-sputtering method and discuss the optical and electrical properties of the thin-film under different process conditions. At the same time, InWO thin-films will be used as an active layer for UV photodetectors (PDs) and channel layer for thin-film transistors (TFTs). Also, we optimize the optical and electrical properties of InWO thin-films to improve device performance. In the first part of the experiment, we use the RF magnetron co-sputter deposition method co-sputtering two targets indium oxide (In2O3) and tungsten oxide (WO3) simultaneously. By adjusting the sputtering power of the WO3 target, we deposited InWO thin-films with different tungsten doping ratios. InWO thin-film properties are also controlled by the thermal annealing process. Then we analyze InWO thin-films through the crystal structure, elemental composition, surface and depth analysis, optical and electrical characteristics. The results of atomic force microscopy indicate that the root-mean-square value of the surface roughness shows a trend from decline to rise, with an increase in the proportion of tungsten doping ratio. Transmission electron microscope guarantee the real thickness and interface quality of the stacked thin-films structure. The results of the X-ray diffraction spectrum show that the InWO thin-films with different tungsten doping ratios have the rhombohedral structure, and their crystallinity decreases with the increase of the tungsten doping ratios, and thermal annealing also increases their crystallinity. The absorption spectrum shows that InWO thin-films have higher than 80% transmittance in the visible and near-infrared light regions, result in excellent transparent conductive oxides (TCOs) characteristics. The results of X-ray photoelectron spectroscopy show that as the proportion of tungsten doping ratios increases, the oxygen vacancies in the InWO film decrease, and the number of free carriers decreases accordingly. The energy dispersive X-ray spectroscopy confirmed the actual weight percentage and atomic percentage of tungsten doping ratio. Hall effect measurement calculates the carrier concentration of tungsten-doped indium oxide film and indium oxide. Finally, a secondary ion mass spectroscopy is used to analyze the main ions in the InWO thin-films. In the second part of the experiment, we apply InWO thin-films to UV PDs. We set different sputtering power of the WO3 target and various thermal annealing gas ambient as the changing parameters. The influence of the optical and electrical properties of UV PDs was discussed. As the proportion of tungsten doping ratio increases, the photocurrent and dark current of the photodetector decrease significantly. Because of the oxygen bond dissociation energy of tungsten and oxygen is larger, which can effectively reduce the number of oxygen vacancies in the InWO thin-films. Although it can increase the stability of the film, at the same time reduces the number of free carriers. Also, when InWO thin-films are thermally annealed in oxygen ambient, its photo-dark current ratio can be greatly improved. Due to the introduction of oxygen gas during the thermal annealing process can further rearrange the lattice and fufill the oxygen deficiency region. In conclusion, UV PDs with the sputtering power of the In2O3 target 80 Watt and the sputtering power of the WO3 target 5 Watt, then thermal annealing for 1 hour in oxygen ambient has the best performances with ON/OFF current ratio greater than 106, the responsivity of 160 A/W, and UV-to-visible rejection ratio of 4.71×104. Also, the time-dependent switching properties have been demonstrated. In the third part of the experiment, we demonstrate TFTs with silicon dioxide (SiO2) as the gate insulator and InWO thin-films as a channel layer. Again, we adjusting the power of the WO3 target to modulate the tungsten doping ratio of the InWO thin-films and controlling the sputtering time to change channel layer thickness. The influence of the optical and electrical characteristics of TFTs was discussed. When the InWO thin-film at an appropriate tungsten doping ratio, the on-current can be boosted while maintaining a small and stable off current, and the switching speed of the transistor can be improved due to reducing of subthreshold swing. The reason is that when tungsten atoms take place in the lattice of the InWO thin-film properly, creating several additional free carriers. Also, changing channel layer thickness will effectively adjust the threshold voltage of the TFTs. By finding the appropriate threshold voltage value, the power consumption of the TFTs can be reduced. In conclusion, we searched for the best optical and electrical properties of the TFTs. We found that when the sputtering power of the In2O3 target is 80 Watt and the sputtering power of the WO3 target is 10 Watt with 20 nm channel layer, TFTs have the best performance. The result calculated from transfer characteristics exhibit field-effect electron mobility of 11.6 cm2/V ∙ s, the threshold voltage of 0.28 V, the subthreshold swing of 0.21 V/dec, and the ON/OFF current ratio is 1.02 × 107. Also, we extend the application of InWO TFTs to phototransistors. With a gate bias of -2 V, the UV-to-visible rejection ratio gives was 5.82 × 108. Moreover, by reducing the drain bias from 8 V to 0.1 V, the UV-to-visible rejection ratio remains 2.34 × 107, which agrees with the excellent power-saving characteristics of the InWO TFTs. Also, the time-dependent switching properties have been demonstrated. In the fourth part of the experiment, to simplify the fabrication process and improve the interface properties between the top electrode and channel layer, we made InWO TFTs with a homojunction structure by using an indium oxide thin-film as the drain and source electrode. The channel layer and top electrode are simultaneously deposited by RF magnetron sputtering. Due to the homojunction between the channel layer and the top electrode, the switching properties of the transistor are improved. Also, because the In2O3 thin-film has high transmittance in the visible light region, the transparency of the TFTs was significantly enhanced. In conclusion, when using the In2O3 target to deposit the top electrode with 80 Watt, the performance of the homojunction InWO TFTs can be further improved. We found that when the sputtering power of the In2O3 target is 80 Watt for top electrode, TFTs have the best performance. The result calculated from transfer characteristics exhibit field-effect electron mobility of 20.1 cm2/V ∙ s, the threshold voltage of 0.89 V, the subthreshold swing of 0.17 V/dec, and the ON/OFF current ratio is 1.45 × 106. Again, we extend the application of InWO TFTs to phototransistors. With a gate bias of -2 V, the UV-to-visible rejection ratio gives was 5.82 × 108. Also, the time-dependent switching properties have been demonstrated.
Chapter 1
[1] Dong Lin. Enhanced stability of thin-film transistors with double-stacked amorphous IWO/IWO:N channel layer, 2018 Semicond. Sci. Technol. 33 065001.
[2] Kenji Nomura, Toshio Kamiya, Hiromichi Ohta, Tomoya Uruga, Masahiro Hirano, and Hideo Hosono. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O. Phys. Rev. B 75, 035212.
[3] Toshio Kamiya, Kenji Nomura, and Hideo Hosono. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs. JOURNAL OF DISPLAY TECHNOLOGY, VOL. 5, NO. 7, JULY 2009.
[4] Po-Yi Kuo , Chien-MinChang, I-Han Liu & Po-Tsun Liu. Two-Dimensional-Like Amorphous Indium Tungsten Oxide Nano-Sheet Junctionless Transistors with Low Operation Voltage. Scientific Reports volume 9, Article number: 7579 (2019).
[5] Nidhi Tiwari, Mayank Rajput, Rohit Abraham John. Indium Tungsten Oxide Thin-films for Flexible High-PerformanceTransistors and Neuromorphic Electronics. ACS Appl. Mater. Interfaces 2018, 10, 36, 30506-30513.
[6] Po-Tsun Liua, Chih-Hsiang Chang, and Chih-Jui Chang. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin-film transistors with bi-layer structure. Appl. Phys. Lett. 108, 261603 (2016).
[7] Wang H., Tang Z.Y., Sun L., He Y.B., Wu Y.X., and Li Z.Y. Novel electrode materials for thin-film ultracapacitors: capacitance performance enhancement of TiO2 doped with Ni and graphite. Rare Metals, 2009, 28(3): 231.
[8] Gupta R.K., Ghosh K., and Kahol P.K. Thickness dependence of optoelectrical properties of tungsten-doped indium oxide films. J. Appl. Surf. Sci., 2009, 255(21): 8926.
[9] Sun S.Y., Huang J., and Lii D.F. Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation. J. Vac. Sci. Technol., 2004, 22(4): 1235.
[10] Hu J.H., and Gordon R.G. Textured aluminum-doped zinc oxide thin-films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys., 1992, 71(2): 880.
[11] L.T Yan, R.E.I Schropp. Changes in the structural and electrical properties of vacuum post-annealedtungsten- and titanium-doped indium oxidefilms deposited by radio frequencymagnetron sputtering. Thin Solid Films Volume 520, Issue 6, 1 January 2012, Pages 2096-2101.
[12] Ivan G, Samatov Bjarke R, Jeppesen Arne, Nylandsted Larsen, Sanjay K. Ram. Room-temperature rf-magnetron sputter-deposited W-doped indium oxide: decoupling the influence of W dopant and O vacancies on the film properties. Appl. Phys. A (2016) 122:458.
[13] Jiaojiao Pan, Wenwen Wang, Dongqi Wu, Qiang Fu, Ding Ma. Tungsten Doped Indium Oxide Thin-films Deposited at Room Temperature by Radio Frequency Magnetron Sputtering. J. Mater. Sci. Technol., 2014, 30(7), 644e648.
[14] Gupta, R. K., et al. "Effect of thickness on optoelectrical properties of Mo-doped indium oxide films." Applied Surface Science 255.5 (2008): 3046-3048.
[15] Gyujin Oh, Jia Jeon, Eun Kyu Kim. Work Function Modification of Tungsten-Doped Indium Oxides Deposited by the Co-Sputtering Method. Journal of Nanoscience and Nanotechnology, Volume 16, Number 5, May 2016, pp. 5109-5113(5)
[16] Xifeng LiQun, ZhangWeina, MiaoLi Huang, Zhuangjian Zhang. Transparent conductive oxide thin-films of tungsten-doped indium oxide. thin Solid Films 515 (2006) 2471-2474.
[17] R. Reshmi Krishnan, V. S. Kavitha, S. R. Chalana, Radhakrishna Prabhu. Effect of Tungsten Doping on the Properties of In2O3 Films. JOM, Vol. 71, No. 5, 2019.
[18] Yanan Zou, Yue Zhang , Yongming Hu , and Haoshuang Gu. Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review. Sensors 2018, 18, 2072.
[19] Liao, Meiyong, et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Japanese Journal of Applied Physics 51.9R (2012): 090115.
[20] Chu-Hsuan Lin, and Chee Wee Liu. Metal-Insulator-Semiconductor Photodetectors. Sensors 2010, 10, 8797-8826.
[21] Kasper, E., Oehme, M. High Speed Germanium Detectors on Si. Phys. Stat. Sol. C 2008, 5, 3144-3149.
[22] Brennan, K.F., Haralson, J., Parks J.W., Salem. Review of Reliability Issues of Metal-Semiconductor-Metal and Avalanche Photodiode Photonic Detectors. Microelectron. Reliab. 1999, 39, 1873-1883.
[23] Shinya Aikawa, Toshihide Nabatame and Kazuhito Tsukagoshi, Si-incorporated amorphous indium oxide thin-film transistors. Jpn. J. Appl. Phys. 58 090506.
[24] Mingyue Qu, Chih‐Hsiang Chang, Ting Meng, Qun Zhang, Po‐Tsun Liu, Han‐Ping D. Shieh Stability study of indium tungsten oxide thin‐film transistors annealed under various ambient conditions. Phys. Status Solidi A214,No. 2, 1600465 (2017).
[25] Toshio Kamiya, Kenji Nomura and Hideo Hosono1. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11 (2010) 044305.
[26] Nomura, Kenji, et al. "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors." Nature 432.7016 (2004): 488.
[27] Hyun-Woo Park, Kyung Park, Jang-Yeon Kwon, Dukhyun Choi, and Kwun-Bum Chung. Effect of Active Layer Thickness on Device Performance of Tungsten-Doped InZnO Thin-Film Transistor. IEEE transactions on electron devices, vol. 64, no. 1, january 2017.
[28] Liang, Xuelei, et al. "Carbon nanotube thin-film transistors for flat panel display application." Single-Walled Carbon Nanotubes. Springer, Cham, 2019. 225-256.
[29] Jae Min Byun, Sang Yeol Lee. Effect of RF Sputtering Power on the Electrical Properties of Si–In–Zn–O Thin-film Transistors. Transactions on Electrical and Electronic Materials 20, pages518–521(2019).
[30] D. H. Cho, S. H. Yang, J. H. Shin, C. W. Byun, M. K. Ryu, J. I. Lee, C. S. Hwang and H. Y. Ch. Passivation of Bottom-Gate IGZO Thin-film Transistors. Journal of the Korean Physical Society, Vol. 54, No. 1, January 2009, pp. 531∼534.
[31] Bierwagen, Oliver. "Indium oxide—a transparent, wide-band gap semiconductor for (opto) electronic applications." Semiconductor Science and Technology 30.2 (2015): 024001.
Chapter 2
[1] Dumke, W. P. "Optical transitions involving impurities in semiconductors." Physical Review 132.5 (1963): 1998.
[2] Zhai, Tianyou, et al. "A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors." Sensors 9.8 (2009): 6504-6529.
[3] Wan, Xia, et al. "A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?." npj 2D Materials and Applications 1.1 (2017): 1-8.
[4] Shur, Michael, Choong Hyun, and Michael Hack. "New high field‐effect mobility regimes of amorphous silicon alloy thin‐film transistor operation." Journal of applied physics 59.7 (1986): 2488-2497.
[5] Li, Xiuling, et al. "High-speed dual-gate a-IGZO TFT-based circuits with top-gate offset structure." IEEE Electron Device Letters 35.4 (2014): 461-463.
[6] Schroder, Dieter K. Semiconductor material and device characterization. John Wiley & Sons, 2006.
[7] D'anna, Pablo Eugenio. "RF power MOSFET device with extended linear region of transconductance characteristic at low drain current." U.S. Patent No. 6,064,088. 16 May 2000.
[8] Bazigos, Antonios, et al. "An adjusted constant-current method to determine saturated and linear mode threshold voltage of MOSFETs." IEEE Transactions on Electron Devices 58.11 (2011): 3751-3758.
[9] Sanford, James L., et al. "A one-megapixel reflective spatial light modulator system for holographic storage." IBM Journal of Research and Development 42.3.4 (1998): 411-426.
[10] Zhan, Runze, et al. "Influence of channel layer and passivation layer on the stability of amorphous InGaZnO thin-film transistors." Microelectronics Reliability 53.12 (2013): 1879-1885.
[11] Shinoki, F., and A. Itoh. "Mechanism of rf reactive sputtering." Journal of Applied Physics 46.8 (1975): 3381-3384.
[12] Van Der Ziel, Aldert. "Noise in solid-state devices and lasers." Proceedings of the IEEE 58.8 (1970): 1178-1206.
[13] J. Rorison, D. C. Herbert, P. J. Dean, and M. S. Skolnick, J. Phys. C 17, 6453 (1984).
[14] Vossen, J. L., and J. J. O'Neill Jr. RF SPUTTERING PROCESSES. RCA Labs., Princeton, NJ, 1968.
[15] Drummond, Geoffrey N., and Richard A. Scholl. "Enhanced reactive DC sputtering system." U.S. Patent No. 5,718,813. 17 Feb. 1998.
[16] Donald M. Mattox, in The Foundations of Vacuum Coating Technology, 2003.
[17] Giessibl, Franz J. "Advances in atomic force microscopy." Reviews of modern physics 75.3 (2003): 949.
[18] Nes, E., and J. Washburn. "Transmission electron microscope investigation of the growth of copper precipitate colonies in silicon." Journal of Applied Physics 44.8 (1973): 3682-3688.
[19] Kacher, Josh, et al. "Bragg's Law diffraction simulations for electron backscatter diffraction analysis." Ultramicroscopy 109.9 (2009): 1148-1156.
[20] Chaikin, Paul M., Tom C. Lubensky, and Thomas A. Witten. Principles of condensed matter physics. Vol. 10. Cambridge: Cambridge university press, 1995.
[21] Chen, M., et al. "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films." Applied Surface Science 158.1-2 (2000): 134-140.
[22] D’Alfonso, A. J., et al. "Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy." Physical Review B 81.10 (2010): 100101.
[23] Kato, Yuichiro K., et al. "Observation of the spin Hall effect in semiconductors." science 306.5703 (2004): 1910-1913.
[24] Pappas, Ilias, Stylianos Siskos, and Charalabos A. Dimitriadis. "A new threshold‐voltage compensation technique of poly‐Si TFTs for AMOLED display pixel circuits." Journal of the Society for Information Display 18.10 (2010): 721-731.
[25] Buschow, KH Jürgen, et al. "Encyclopedia of materials." Science and technology 1 (2001): 11.
Chapter 3
[1] Chaaya, Adib Abou, et al. "ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications." Journal of Materials Chemistry A 2.48 (2014): 20650-20658.
[2] Viezbicke, Brian D., et al. "Evaluation of the Tauc method for optical absorption edge determination: ZnO thin-films as a model system." physica status solidi (b) 252.8 (2015): 1700-1710.
[3] Chaaya, Adib Abou, et al. "ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications." Journal of Materials Chemistry A 2.48 (2014): 20650-20658.
[4] Viezbicke, Brian D., et al. "Evaluation of the Tauc method for optical absorption edge determination: ZnO thin-films as a model system." physica status solidi (b) 252.8 (2015): 1700-1710.
[5] Wasim, S. M., et al. "Effect of structural disorder on the Urbach energy in Cu ternaries." Physical Review B 64.19 (2001): 195101.
[6] Ruan, Dun-Bao, et al. "Mobility enhancement for high stability tungsten-doped indium-zinc oxide thin-film transistors with a channel passivation layer." RSC advances 8.13 (2018): 6925-6930.
[7] Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007), p. 713
[8] Purvis, Kathleen L., et al. "Surface characterization and modification of indium tin oxide in ultrahigh vacuum." Journal of the American Chemical Society 122.8 (2000): 1808-1809.
Chapter 4
[1] Lv, Yanhui, et al. "Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO 4 nanorod." Journal of Materials Chemistry A 2.4 (2014): 1174-1182.
[2] Choudhury, Biswajit, and Amarjyoti Choudhury. "Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles." Physica E: Low-Dimensional Systems and Nanostructures 56 (2014): 364-371.
[3] Pannetier, J., et al. "Prediction of crystal structures from crystal chemistry rules by simulated annealing." Nature 346.6282 (1990): 343-345.
[4] Korotcenkov, G., et al. "Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing." Thin Solid Films 479.1-2 (2005): 38-51.
[5] Momot, Aleksandr, et al. "A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc." Physical Chemistry Chemical Physics 19.40 (2017): 27866-27877.
[6] Kim, Seong-Goo, et al. "Post-annealing in oxygen ambient for (Ba, Sr) TiO3 thin-films prepared by pulsed laser deposition." Materials Letters 43.5-6 (2000): 254-258.
[7] Quah, Hock Jin, et al. "Effect of postdeposition annealing in oxygen ambient on gallium-nitride-based MOS capacitors with cerium oxide gate." IEEE transactions on electron devices 58.1 (2010): 122-131.
[8] Park, Hyun-Woo, et al. "Enhancing the performance of tungsten doped InZnO thin-film transistors via sequential ambient annealing." Applied Physics Letters 112.12 (2018): 123501.
Chapter 5
[1] Young, K. Konrad. "Short-channel effect in fully depleted SOI MOSFETs." IEEE Transactions on Electron Devices 36.2 (1989): 399-402.
[2] Takeda, Eiji, Cary Y. Yang, and Akemi Miura-Hamada. Hot-carrier effects in MOS devices. Academic Press, 1995.
[3] Kizu, Takio, et al. "Low-temperature processable amorphous In-WO thin-film transistors with high mobility and stability." Applied Physics Letters 104.15 (2014): 152103.
[4] Li, Jia, and T‐P. Ma. "Scattering of silicon inversion layer electrons by metal/oxide interface roughness." Journal of applied physics 62.10 (1987): 4212-4215.
[5] Park, Hyun-Woo, et al. "Improvement of device performance and instability of tungsten-doped InZnO thin-film transistor with respect to doping concentration." Applied Physics Express 9.11 (2016): 111101.
[6] Kittel, Charles. Introduction to solid state physics. Vol. 8. New York: Wiley, 1976.
[7] Chen, Ai Hua, et al. "Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor." Microelectronic engineering 87.10 (2010): 2019-2023.
[8] Koo, Chang Young, et al. "Low temperature solution-processed InZnO thin-film transistors." Journal of The Electrochemical Society 157.4 (2010): J111-J115.
[9] Wang, Ye, et al. "Influence of channel layer thickness on the electrical performances of inkjet-printed In-Ga-Zn oxide thin-film transistors." IEEE Transactions on Electron Devices 58.2 (2010): 480-485.
[10] Yu, Woo Jong, et al. "Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials." Nature nanotechnology 8.12 (2013): 952.
[11] Beysens, D., and P. Calmettes. "Temperature dependence of the refractive indices of liquids: deviation from the Lorentz–Lorenz formula." The Journal of Chemical Physics 66.2 (1977): 766-771.
[12] Mandarino, Joseph A. "The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study." The Canadian Mineralogist 45.5 (2007): 1307-1324.
[13] K. Ishii, A. Takami, and Y. Ohki, “Effects of fluorine addition on the structure and optical properties of SiO2 films formed by plasmaenhanced chemical vapor deposition,” J. Appl. Phys., vol. 81, no. 3,pp. 1470–1474, Oct. 1997.
[14] J.-H. Kim et al., “Effect of fluorine incorporation on silicon dioxide prepared by high density plasma chemical vapor deposition with SiH4/O2/NF3 chemistry,” J. Appl. Phys., vol. 96, no. 3, pp. 1435–1442, May 2004.
[15] Medenbach, O., et al. "Refractive index and optical dispersion of In2O3, InBO3 and gahnite." Materials Research Bulletin 48.6 (2013): 2240-2243.
[16] Boukhili, W., et al. "Hysteresis control by varying Ta2O5-nanoparticles concentration in PMMA-Ta2O5 bilayer gate dielectric of hybrid-organic thin-film transistors." Organic Electronics 75 (2019): 105390.
[17] Guo, Jian, et al. "Two‐stage degradation in n‐channel LTPS‐TFTs under negative and positive bias stresses." Journal of the Society for Information Display (2020).
[18] Park, Hyun-Woo, et al. "Dynamics of bias instability in the tungsten-indium-zinc oxide thin-film transistor." Journal of Materials Chemistry C 7.4 (2019): 1006-1013.
[19] Corsino, Dianne C., et al. "Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors." Applied Physics Express 11.6 (2018): 061103.
[20] Cho, In-Hwan, et al. "Influence of lithium doping on the electrical properties and aging effect of ZnSnO thin-film transistors." Semiconductor Science and Technology 33.8 (2018): 085004.
[21] Ito, Daisuke, et al. "Influence of Schottky and Poole–Frenkel emission on the retention property of YMnO 3-based metal/ferroelectric/insulator/semiconductor capacitors." Journal of applied physics 94.6 (2003): 4036-4041.
[22] Li, Jyun-Yi, et al. "Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-${k} $ Dielectrics." IEEE Photonics Technology Letters 30.1 (2017): 59-62.
[23] Yu, Woo Jong, et al. "Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials." Nature nanotechnology 8.12 (2013): 952.
Chapter 6
[1] Park, Jin-Seong, et al. "Control of threshold voltage in ZnO-based oxide thin-film transistors." Applied Physics Letters 93.3 (2008): 033513.
[2] Yim, Jung-Ryoul, et al. "Effects of metal electrode on the electrical performance of amorphous In–Ga–Zn–O thin-film transistor." Japanese Journal of Applied Physics 51.1R (2011): 011401.
[3] Na, Jong H., M. Kitamura, and Y. Arakawa. "High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes." Applied Physics Letters 93.6 (2008): 063501.
[4] Park, Sung Kyu, et al. "High-performance polymer TFTs printed on a plastic substrate." IEEE Transactions on Electron Devices 49.11 (2002): 2008-2015.
[5] Barquinha, P. et al. Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material. IEEE Trans. Electron Devices. 55(4), 954–960 (2008).
[6] Park, Jin-Seong, et al. "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment." Applied Physics Letters 90.26 (2007): 262106.
[7] Lu, Yang-Ming, et al. "Effect of RF power on optical and electrical properties of ZnO thin-film by magnetron sputtering." Materials chemistry and physics 72.2 (2001): 269-272.
[8] Giordano, Livia, Fabrizio Cinquini, and Gianfranco Pacchioni. "Tuning the surface metal work function by deposition of ultrathin oxide films: Density functional calculations." Physical Review B 73.4 (2006): 045414.
[9] Cho, Young Shin, et al. "Spontaneous Pt deposition on defective surfaces of In2O3 nanocrystals confined within cavities of hollow silica nanoshells: Pt catalyst-modified ITO electrode with enhanced ECL performance." ACS applied materials & interfaces 9.24 (2017): 20728-20737.