研究生: |
王豊惟 Wang, Li-Wei |
---|---|
論文名稱: |
用長期居家睡眠監測開發運動員睡眠表現和睡後恢復評估模型:以鐵人三項運動員為例 Developing an Athlete Sleep Performance and Recovery Estimation Model through Long-Term Home Sleep Monitoring: A Case Study of a Triathlete |
指導教授: |
梁勝富
Liang, Sheng-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 運動員恢復 、睡眠監測 、腦電圖 、覺醒指數 、模糊推論系統 、個人化評估 |
外文關鍵詞: | athlete recovery, sleep monitoring, electroencephalography (EEG), arousal index, fuzzy inference system (FIS), personalized assessment |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精確的恢復監測與建議對提升運動表現至關重要,而睡眠則是恢復過程中的核心要素。為解決當前運動員睡眠監測面臨的挑戰—臨床級設備不利於長期應用,而消費級裝置的演算法精準度不足且缺乏透明性—本研究致力於開發並驗證一套透明化、個人化,且基於腦波訊號 (EEG) 的睡眠恢復評估框架,期望為運動員提供每日睡後恢復與介入建議的依據。本研究針對一位 27 歲男性鐵人三項運動員進行為期 38 天的縱向個案研究。受試者每晚於居家環境中自主配戴整合腦波與呼吸監測功能的模組化系統,並由專業睡眠技師進行資料判讀。此外,受試者每日填寫主觀睡眠日誌,記錄主觀與客觀訓練強度,並回報當日生活中的重大事件,以作為綜合恢復評估的重要參考。我們進一步建構一套基於模糊推論系統 (fuzzy inference system, FIS) 的睡眠恢復評估模型,並設計多維度雷達圖以進行視覺化診斷與回饋。在38天的監測期間中,共成功取得30晚的有效客觀睡眠資料,資料取得率為78.9%,並篩選出20晚品質良好的資料進行深入分析。研究結果顯示,儘管該名運動員的多項傳統睡眠指標多數落在臨床正常範圍內,例如睡眠效率 (sleep efficiency, SE)、睡眠潛伏期 (sleep onset latency, SOL) 及入睡後醒來總時數 (wake after sleep onset, WASO),其實際恢復狀態卻仍呈現明顯波動,反映出傳統指標在精細評估恢復狀態時敏感度有限,若搭配覺醒指數 (arousal index, AI) 等反映睡眠穩定度的指標一併評估,則能更具體揭示恢復狀態的變化。本研究所建立的 FIS 模型在恢復評估中展現出高度的預測準確性,整體一致性達 83.3%。多維度雷達圖能清晰揭示恢復不佳的潛在原因,例如睡眠時長不足、睡眠連續性差及穩定度下降等。綜合來說,本研究成功構建了一套可行、透明且具個人化特性的恢復評估框架,不僅驗證了居家長期睡眠監測的實用性,更提供超越傳統睡眠分數的資料導向評估工具,有助於運動員與教練更有效優化訓練與恢復策略。此框架未來有望推廣至更廣泛的運動員族群,透過個人化且精準的回饋,促進科學化訓練與表現優化。
Accurate recovery monitoring and guidance are crucial for enhancing athletic performance, with sleep serving as a core component of the recovery process. To address current challenges in athlete sleep monitoring—namely, the impracticality of clinical-grade devices for long-term use and the limited accuracy and transparency of consumer-grade device algorithms—this study aims to develop and validate a transparent, personalized sleep recovery estimation framework based on electroencephalography (EEG) signals, providing athletes with daily recovery and intervention recommendations. This study conducted a 38-day longitudinal case study involving a 27-year-old male triathlete. The participant wore a modular system integrating EEG and respiratory monitoring every night in his home environment, with data scored by professional sleep technicians. Additionally, he completed daily subjective sleep diaries, recorded both subjective and objective training intensities, and reported major daily life events, serving as important references for comprehensive recovery evaluation. We further developed a sleep recovery estimation model based on a fuzzy inference system (FIS) and designed a multidimensional radar chart for visual diagnosis and feedback. During the 38-day monitoring period, 30 nights of valid objective sleep data were successfully collected, yielding a data acquisition rate of 78.9%, from which 20 high-quality nights were selected for in-depth analysis. Results showed that although most conventional sleep metrics—such as sleep efficiency (SE), sleep onset latency (SOL), and wake after sleep onset (WASO)—remained within clinical normal ranges, the athlete’s actual recovery status exhibited significant fluctuations. This indicates that conventional metrics have limited sensitivity in finely evaluating recovery status. Incorporating key indicators of sleep stability, particularly the arousal index (AI), provided a more specific insight into recovery changes. The FIS model established in this study demonstrated high predictive accuracy in recovery estimation, achieving an overall agreement of 83.3%. The multidimensional radar chart clearly highlighted potential causes of poor recovery, including insufficient sleep duration, poor sleep continuity, and decreased stability. In summary, this study successfully constructed a feasible, transparent, and personalized recovery estimation framework that not only validates the practicality of long-term home sleep monitoring but also offers a data-driven evaluation tool that surpasses traditional sleep scores, assisting athletes and coaches in optimizing training and recovery strategies more effectively. In the future, this framework can be extended to a broader population of athletes, providing personalized and precise feedback to support more scientific training interventions and enhance performance.
Allen, H., Coggan, A. R., & McGregor, S. (2019). Training and racing with a power meter. VeloPress.
Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports medicine, 33(12), 889-919.
Aubry, A., Hausswirth, C., Louis, J., Coutts, A. J., & Le Meur, Y. (2014). Functional overreaching: the key to peak performance during the taper? Medicine and science in sports and exercise, 46(9), 1769-1777.
Basner, M., & Dinges, D. F. (2011). Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. sleep, 34(5), 581-591.
Bender, A. M., Lawson, D., Werthner, P., & Samuels, C. H. (2018). The clinical validation of the athlete sleep screening questionnaire: an instrument to identify athletes that need further sleep assessment. Sports medicine-open, 4, 1-8.
Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Quan, S. F., Troester, M. T., & Vaughn, B. V. (2017). AASM scoring manual updates for 2017 (version 2.4). In (Vol. 13, pp. 665-666): American Academy of Sleep Medicine.
Bird, S. P. (2013). Sleep, recovery, and athletic performance: a brief review and recommendations. Strength & Conditioning Journal, 35(5), 43-47.
Carney, C. E., Buysse, D. J., Ancoli-Israel, S., Edinger, J. D., Krystal, A. D., Lichstein, K. L., & Morin, C. M. (2012). The consensus sleep diary: standardizing prospective sleep self-monitoring. sleep, 35(2), 287-302.
Chauvineau, M., Pasquier, F., Poirier, C., Le Garrec, S., Duforez, F., Guilhem, G., & Nedelec, M. (2023). Higher training loads affect sleep in endurance runners: Can a high-heat-capacity mattress topper mitigate negative effects? Journal of Sports Sciences, 41(17), 1605-1616.
Dai, J., Xu, X., Chen, G., Lv, J., & Xiao, Y. (2025). Sleep-wake patterns of fencing athletes: a long-term wearable device study. PeerJ, 13, e18812.
Davenne, D. (2009). Sleep of athletes–problems and possible solutions. Biological Rhythm Research, 40(1), 45-52.
Doherty, R., Madigan, S. M., Nevill, A., Warrington, G., & Ellis, J. G. (2021). The sleep and recovery practices of athletes. Nutrients, 13(4), 1330.
Driller, M. W., Dunican, I. C., Omond, S. E., Boukhris, O., Stevenson, S., Lambing, K., & Bender, A. M. (2023). Pyjamas, polysomnography and professional athletes: the role of sleep tracking technology in sport. Sports, 11(1), 14.
Driller, M. W., Mah, C. D., & Halson, S. L. (2018). Development of the athlete sleep behavior questionnaire: a tool for identifying maladaptive sleep practices in elite athletes. Sleep Science, 11(01), 37-44.
Ferlini, A., Ma, D., Qendro, L., & Mascolo, C. (2022). Mobile health with head-worn devices: Challenges and opportunities. IEEE Pervasive Computing, 21(3), 52-60.
Fonseca, P., Weysen, T., Goelema, M. S., Møst, E. I., Radha, M., Lunsingh Scheurleer, C., van den Heuvel, L., & Aarts, R. M. (2017). Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults. sleep, 40(7), zsx097.
Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research, 15(1), 109-115.
Gupta, L., Morgan, K., & Gilchrist, S. (2017). Does elite sport degrade sleep quality? A systematic review. Sports medicine, 47(7), 1317-1333.
Halson, S. L. (2008). Nutrition, sleep and recovery. European Journal of sport science, 8(2), 119-126.
Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 34(2), 163-171.
Kenttä, G., & Hassmén, P. (1998). Overtraining and recovery: A conceptual model. Sports medicine, 26, 1-16.
Knufinke, M., Nieuwenhuys, A., Geurts, S. A., Møst, E. I., Maase, K., Moen, M. H., Coenen, A. M., & Kompier, M. A. (2018). Train hard, sleep well? Perceived training load, sleep quantity and sleep stage distribution in elite level athletes. Journal of science and medicine in sport, 21(4), 427-432.
Kolla, B. P., Mansukhani, S., & Mansukhani, M. P. (2016). Consumer sleep tracking devices: a review of mechanisms, validity and utility. Expert review of medical devices, 13(5), 497-506.
Kryger, M. H., Roth, T., & Dement, W. C. (2010). Principles and practice of sleep medicine E-book: Expert consult-online and print. Elsevier Health Sciences.
Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2-18.
Laffan, A., Caffo, B., Swihart, B. J., & Punjabi, N. M. (2010). Utility of sleep stage transitions in assessing sleep continuity. sleep, 33(12), 1681-1686.
Liang, S.-F., Kuo, C.-E., Lee, Y.-C., Lin, W.-C., Liu, Y.-C., Chen, P.-Y., Cherng, F.-Y., & Shaw, F.-Z. (2015). Development of an EOG-based automatic sleep-monitoring eye mask. IEEE Transactions on Instrumentation and Measurement, 64(11), 2977-2985.
Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), 1-13.
Marino, M., Li, Y., Rueschman, M. N., Winkelman, J. W., Ellenbogen, J. M., Solet, J. M., Dulin, H., Berkman, L. F., & Buxton, O. M. (2013). Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. sleep, 36(11), 1747-1755.
Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Medicine and science in sports and exercise, 45(1), 186-205.
Minett, G. M., & Duffield, R. (2014). Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Frontiers in physiology, 5, 24.
Netzer, N. C., Kristo, D., Steinle, H., Lehmann, M., & Strohl, K. P. (2001). REM sleep and catecholamine excretion: a study in elite athletes. European journal of applied physiology, 84(6), 521-526.
Pomeranz, B., Macaulay, R., Caudill, M. A., Kutz, I., Adam, D., Gordon, D., Kilborn, K. M., Barger, A. C., Shannon, D. C., & Cohen, R. J. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology-Heart and Circulatory Physiology, 248(1), H151-H153.
Roomkham, S., Lovell, D., Cheung, J., & Perrin, D. (2018). Promises and challenges in the use of consumer-grade devices for sleep monitoring. IEEE reviews in biomedical engineering, 11, 53-67.
Russo, M. A., Santarelli, D. M., & O’Rourke, D. (2017). The physiological effects of slow breathing in the healthy human. Breathe, 13(4), 298-309.
Samuels, C. (2008). Sleep, recovery, and performance: the new frontier in high-performance athletics. Neurologic clinics, 26(1), 169-180.
Samuels, C., James, L., Lawson, D., & Meeuwisse, W. (2016). The athlete sleep screening questionnaire: a new tool for assessing and managing sleep in elite athletes. British journal of sports medicine, 50(7), 418-422.
Sanders, N., Randell, R. K., Thomas, C., Bailey, S. J., & Clifford, T. (2024). Sleep architecture of elite soccer players surrounding match days as measured by WHOOP straps. Chronobiology International, 41(4), 539-547.
Sargent, C., Lastella, M., Halson, S. L., & Roach, G. D. (2014). The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiology International, 31(10), 1160-1168.
Schutte-Rodin, S., Deak, M. C., Khosla, S., Goldstein, C. A., Yurcheshen, M., Chiang, A., Gault, D., Kern, J., O’Hearn, D., & Ryals, S. (2021). Evaluating consumer and clinical sleep technologies: an American Academy of Sleep Medicine update. Journal of Clinical Sleep Medicine, 17(11), 2275-2282.
Sztajzel, J. (2004). Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss medical weekly, 134(3536), 514-522.
Taylor, S. R., Rogers, G. G., & Driver, H. S. (1997). Effects of training volume on sleep, psychological, and selected physiological profiles of elite female swimmers. Medicine and science in sports and exercise, 29(5), 688-693.
Venter, R. E. (2012). Role of sleep in performance and recovery of athletes: a review article. South African Journal for Research in Sport, Physical Education and Recreation, 34(1), 167-184.
Walsh, N. P., Halson, S. L., Sargent, C., Roach, G. D., Nédélec, M., Gupta, L., Leeder, J., Fullagar, H. H., Coutts, A. J., & Edwards, B. J. (2021). Sleep and the athlete: narrative review and 2021 expert consensus recommendations. British journal of sports medicine, 55(7), 356-368.
Walters, P. H. (2002). Sleep, the athlete, and performance. Strength & Conditioning Journal, 24(2), 17-24.
Whitworth-Turner, C., Di Michele, R., Muir, I., Gregson, W., & Drust, B. (2018). A comparison of sleep patterns in youth soccer players and non-athletes. Science and Medicine in Football, 2(1), 3-8.
Zadeh, L. (1965). Fuzzy sets. Inform Control, 8, 338-353.