研究生: |
吳冠德 Wu, Kuan-Te |
---|---|
論文名稱: |
三碘化甲胺鉛微米線特性研究及其光感測器之應用 Studies of CH3NH3PbI3 microwires and its application on photodetectors |
指導教授: |
鄭弘隆
Cheng, Horng-Long |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | CH3NH3PbI3微米線 、記憶效應 、光導體元件 、薄膜電晶體 |
外文關鍵詞: | CH3NH3PbI3 microwires, memristors, photoconductors, organic thin-film transistors |
相關次數: | 點閱:155 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用流體引導之反溶劑蒸氣輔助結晶法(FGAVC)法製作出結晶性更好、更具方向性的三碘化甲胺鉛(CH3NH3PbI3)微米線,研究微米線的材料與光電特性,並且應用於光感測元件上。
運用原子力顯微鏡、掃描式電子顯微鏡、導電式原子力顯微鏡、掃描式凱爾文探針顯微鏡、X光繞射儀分析以及光致螢光光譜等儀器分析CH3NH3PbI3微米線,探討微米線的材料與光電特性。由材料分析可得知,利用FGAVC法能使CH3NH3PbI3結晶自組裝成微米線且具有方向性,而CH3NH3I:PbI2莫爾比例1.5:1為微米線的最佳製程參數。由光電特性分析,單根CH3NH3PbI3微米線在照光下的電流電壓曲線呈現電阻式記憶體的電特性。
進一步將CH3NH3PbI3微米線應用在光感測器上,我們製作了兩種元件結構,分別是光導體元件與電晶體,光導體元件中我們量測不同波長雷射光照射下的電性,得知藍光照射時,元件有最大光響應,而紅、綠光照射時,元件光響應較小;使用CH3NH3PbI3微米線搭配十三烷基駢苯衍生物(PTCDI-C13)當主動層,製作成小電壓驅動有機電晶體,研究其光感應特性,結果顯示導入CH3NH3PbI3微米線,可使有機電晶體具有分辨不同色光的能力。
本研究解析CH3NH3PbI3微米線的材料及光電特性,成功利用微米線製作出光偵測器,其中藍光照射下元件光響應度可達15 mA/W。
In this study, we investigated the structural and electrical properties of CH3NH3PbI3 microwires prepared by fluid-guided anti-solvent vapor-assisted crystallization; their application in photosensors was also evaluated. The CH3NH3PbI3 microwires were characterized by atomic force microscopy (AFM), scanning electron microscopy, and conductive AFM. CH3NH3PbI3 self-assembled into microwires with directional crystallization, and a single microwire showed memristor-like behavior under light illumination. The electrical properties of CH3NH3PbI3 microwire-based photoconductors were then investigated under laser illumination with various wavelengths. Under blue light illumination, the photoconductors exhibited a photo-responsivity of 15 mA/W; under red and green light illumination, however, a photo-responsivity of only 2 mA/W was obtained. Finally, we studied the photoresponse properties of CH3NH3PbI3 microwire/N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) composite-based thin-film transistors (TFTs). A top layer of PTCDI-C13 was thermally deposited onto the CH3NH3PbI3 microwires to form the active layer of TFTs, and results showed that the composite-based TFTs could distinguish different colors of light.
[1] Kojima, A. et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” , J. Am. Chem. Soc., 131, 6560, 2009.
[2] M. Saliba et al., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science, 354, 206, 2016.
[3] Sum, T. C. et al., “Advancements in perovskite solar cells:
photophysics behind the photovoltaics”, energy environ. Sci., 7, 2518, 2014.
[4] W. Y. Chen et al., “Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cell”, J. Mater. Chem. A, 3, 19353, 2015.
[5] P. Fan et al., “High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition”, Sci. Rep., 6, 29910, 2016.
[6] W. Nie et al., “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.
[7] H. Cho et al., “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science, 350, 1222, 2015.
[8] L. Zhang et al., “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes”, Nat. Commun., 8, 15640, 2017.
[9] M. R. Leyden et al., “Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition”, J. Phys. Chem. Lett., 8, 3193, 2017.
[10] L. Dou et al., “Solution-processed hybrid perovskite photodetectors with high detectivity”, Nat. Commun, 5, 5404, 2014.
[11] H. Wang et al., “Perovskite-based photodetectors: materials and devices”, Chem. Soc. Rev., 46, 5204, 2017.
[12] E. Horvath et al., “Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization”, Nano Lett.,14, 6761, 2014.
[13] W. Deng et al., “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability”, Adv. Mater., 28, 2201, 2016.
[14] J. Xing et al., “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers”, Nano Lett., 15, 4571, 2015.
[15] H. Deng et al., “Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices”, Nanoscale, 7, 4163, 2015.
[16] E. Horvath et al., “Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization”, Nano Lett., 14, 6761, 2014.
[17] P. Zhu et al., “Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices”, Nano Lett., 16, 871, 2016.
[18] W. Deng et al., “Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement”, Nano Lett., 17, 2482, 2017.
[19] X. Xu et al., “Saturated vapor-assisted growth of single-crystalline organic−inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability”, ACS Appl. Mater. Interfaces, 10, 10287, 2018.
[20] R. J. Mclntyre, “Measurement”, 3, 146, 1985.
[21] H. W. Chen et al., “A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber”, J. Phys. Chem. Lett., 6, 1773, 2015.
[22] Z. Ku et al., “Full printable processed pesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode”, Sci. Rep., 3, 3132, 2013.
[23] Kai Yan et al., “High-performance perovskite memristor based on methyl ammonium lead halides”, J. Mater. Chem. C, 4, 1375, 2016.
[24] C. Gu et al., “Flexible hybrid organic−inorganic perovskite memory”, ACS Nano, 10, 5413, 2016.
[25] G. Lin et al., “An organic–inorganic hybrid perovskite logic gate for better computing”, J. Mater. Chem. C, 3, 10793, 2015.
[26] Z. Xiao et al., “Giant switchable photovoltaic effect in
organometal trihalide perovskite devices”, Nature Mater., 14, 193, 2015.
[27] X. Xu et al., “Saturated vapor-assisted growth of single-crystalline organic−inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability”, ACS Appl. Mater. Interfaces, 10, 10287, 2018.
[28] C.Zhang et al., “Effective improvement of the photovoltaic performance of carbon-based perovskite solar cells by additional solvents”, Nano-Micro Letters, 8, 347, 2016.
[29] Md. Mijanur Rahman et al., “Effect of the filtration of PbI2 solution for zinc oxide nanowire based perovskite solar cells”, Jpn. J. Appl. Phys., 55, 01AE09, 2016.
[30] D. Bi et al., “Efficient luminescent solar cells based on tailored mixed-cation perovskites”, Sci. Adv., 2, e1501170, 2016.
[31] Y. Zhang et al., “Enhanced optoelectronic quality of perovskite films with excess CH3NH3I for high-efficiency solar cells in ambient air”, Nanotechnology, 28, 205401, 2017.
[32] S. D. Stranks et al, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science, 342, 341, 2013.
[33] X. Jia et al, “Facile synthesis of organiceinorganic hybrid perovskite CH3NH3PbI3 microcrystals”, J. Alloys Compd., 725, 270, 2017.
[34] E. J. Juarez-Perez et al, “Photoinduced giant dielectric constant in lead halide perovskite solar cells”, Science, 347, 519, 2015.