簡易檢索 / 詳目顯示

研究生: 劉芳妤
Liu, Fang-Yu
論文名稱: 三相磁電彈複合材料之有效黏彈和非線性行為
Effective time-dependent and nonlinear responses of three-phase magneto-electro-elastic composites
指導教授: 林建宏
Lin, Chien-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 55
中文關鍵詞: 三相複合材料磁電彈性複合材料非線性磁電效應黏彈性時間相關的響應微觀力學
外文關鍵詞: Three-phase composite, electro-magneto-elastic composite, nonlinear magnetoelectric effect, viscoelasticity, time-dependent response, Micromechanics
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁電效應指的是在施加的磁場下產生的電極化強度,反之亦然在施加的電場下產生的磁化強度。三相磁電彈複合材料為彈性層中嵌入壓電層和壓磁層,並展現磁場,電場和機械場之間的耦合。這種類型的複合材料比壓電和壓磁材料直接結合的兩相磁電複合材料具有更好的延展性和可塑性。壓電和壓磁材料本身具有脆性和不順應性,因此包含這兩個相的複合材料會受到脆性斷裂的影響。因此本研究採用廣義版單位晶格模型來介紹三相磁電彈複合材料的有效磁電效應。為了進行比較,我們還建立了完善的 Mori – Tanaka 模型。這些基於代表性體積元素的微觀力學模型用於預測連續多相複合材料的有效響應。廣義版單位晶格模型可以辨別每個相的特殊排列方式及相體積分數等等。因此他可以呈現出應用中多相複合材料的真實反應。三相電磁彈性複合材料的非線性本構方程和隨時間變化的行為是必須考慮。這是因為聚合物材料在機械負載,溫度等的共同作用下會產生時間依賴性。由於材料的非線性和非線性本構方程式可以良好地捕獲實驗數據,因此考慮非線性行為是必不可少的。為了使線性本構方程式能獲得整體響應,使用定點迭代法來減少線性化非線性磁電效應及時間相關行為所造成的誤差。實驗結果與微觀力學模型所預測的有效響應有良好的一致性。呈現出具有纖維,顆粒和層板連接性的三相電磁彈性複合材料的參數研究。

    The magnetoelectric effect is defined as the electric polarization produces under an applied magnetic field or vice versa as the magnetization produces under an applied electric field. A three phase magneto-electro-elastic composite which consists of piezomagnetic reinforcement and piezoelectric reinforcement embedded with elastic matrix reveals the coupling between the magnetic field, the electric field and mechanical field. This type composite would has more excellent ductility malleability and formability than a two phase magneto-electric composite which is bonded directly with piezoelectric and piezomagnetic material. The piezoelectric and piezomagnetic material are inherently brittle and noncompliant, hence a composite which contains these two phases would impact on brittle fracture. As a result, this study introduces the effective magneto-electric effect of magnetoelectric-elastic three-phase composites with the micromechanical generalized method of cells model. For the comparison, we also build the well-established Mori–Tanaka model. These micromechanical models which are based on averaging of a representative volume element is employed for the prediction the effective responses of continuous multiphase composites. The generalized method of cells model recognizes the special arrangements for each phase, phase volume fractions and so on. Therefore, it can present true reflector of the multiphase composite applied on applications. It is essential that consider the nonlinear constitutive equations and time-dependent behavior for three-phase magneto-electric-elastic composites. This is because the time-dependent behaviors of polymeric materials under combination of mechanical loading, temperature, and so on. Due to the material nonlinearity and the nonlinear constitutive equations which can capture well the experimental results, it is essential to consider the nonlinear behaviors. In order that linear constitutive laws are used to attain the overall behaviors, a fixed-point iteration is applied to decrease errors from linearizing the nonlinear magneto-electric effect and time-dependent behaviors. The effective responses of the prediction are validated with the experimental results. Parametric studies are presented for three-phase magneto-electric-elastic composites with fiber-, particle- and lamina- connectivity.

    ABSTRACT I ACKNOWLEDGEMENTS III TABLE OF CONTENTS IV LIST OF FIGURES V LIST OF TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Active material 2 1.2.2 The time dependent behaviors of magneto-electric-elastic composites 5 1.2.3 Micromechanical modeling 6 1.3 Research Objective 8 CHAPTER 2 GOVERNING AND CONSTITUTIVE EQUATIONS OF THREE PHASE COMPOSITES 9 CHAPTER 3 MICROMECHANICS MODEL 14 3.1 Generalized Method of Cells 14 3.2 Mori–Tanaka Model 18 3.3 Unit-cell Model And Time-integration Algorithm 23 CHAPTER 4 RESULTS AND DISCUSSIONS 27 4.1 Experimental Validations 27 4.2 Parameter Studies 28 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH 44 5.1 Conclusions 44 5.2 Future Research 46 REFERENCE 47 APPENDIX 52

    1. Aboudi, J.: ‘Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites’, Smart Materials and Structures, 2001, 10, (5), pp. 867-877
    2. Aboudi, J.: ‘Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites’, Journal of Intelligent Material Systems and Structures, 1998, 9, (9), pp. 713-722
    3. Benveniste, Y.: ‘Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases’, Physical Review B, 1995, 51, (22), pp. 16424-16427
    4. Carman, G., and M. Mitrovic.: ‘Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems.’ J. Intel. Mat. Syst. Str. 6(5), 673–683 (1995)
    5. Crawley, E.F., and Anderson, E.H.: ‘Detailed Models of Piezoceramic Actuation of Beams’, Journal of Intelligent Material Systems and Structures, 1990, 1, (1), pp. 4-25
    6. Domenjoud, M., et al. (2019). "Characterization of giant magnetostrictive materials under static stress: influence of loading boundary conditions." Smart Materials and Structures 28(9).
    7. Dong, S., Li, J.-F., and Viehland, D.: ‘Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes’, Journal of Applied Physics, 2004, 95, (5), pp. 2625-2630
    8. Gavazzi, A.C., and Lagoudas, D.C.: ‘On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites’, Computational Mechanics, 1990, 7, (1), pp. 13-19
    9. Haj-Ali, R.M., and Muliana, A.H.: ‘Numerical finite element formulation of the Schapery non-linear viscoelastic material model’, International Journal for Numerical Methods in Engineering, 2004, 59, (1), pp. 25-45
    10. Harshe, G., Dougherty, J., and Newnham, R.: ‘Magnetoelectric effect in composite materials’ (SPIE, 1993. 1993)
    11. Hogea, C.S., and Armstrong, W.D.: ‘The time-dependent magneto-visco-elastic behavior of a magnetostrictive fiber actuated viscoelastic polymer matrix composite’, J Acoust Soc Am, 2002, 112, (5 Pt 1), pp. 1928-1936
    12. Huang, J.H., and Kuo, W.-S.: ‘The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions’, Journal of Applied Physics, 1997, 81, (3), pp. 1378-1386
    13. J. Lee, J.G. Boyd, D.C. Lagoudas.: ‘Three-phase electro-magneto-elastic multifunctional composite materials’, in: SPIE 10th Annual International Symposium on Smart Structures held at San Diego, CA March 2–6, vol. 5053, 2003.
    14. Jiles, D.C., and Thoelke, J.B.: ‘Magnetization and Magnetostriction in Terbium–Dysprosium–Iron Alloys’, physica status solidi (a), 1995, 147, (2), pp. 535-551
    15. Kuo, H.-Y., and Peng, C.-Y.: ‘Magnetoelectricity in coated fibrous composites of piezoelectric and piezomagnetic phases’, International Journal of Engineering Science, 2013, 62, pp. 70-83
    16. Lai, J., and Bakker, A.: ‘3-D schapery representation for non-linear viscoelasticity and finite element implementation’, Computational Mechanics, 1996, 18, (3), pp. 182-191
    17. Lee, J., Boyd, J.G., and Lagoudas, D.C.: ‘Effective properties of three-phase electro-magneto-elastic composites’, International Journal of Engineering Science, 2005, 43, (10), pp. 790-825
    18. Li, J.Y., and Dunn, M.L.: ‘Micromechanics of Magnetoelectroelastic Composite Materials: Average Fields and Effective Behavior’, Journal of Intelligent Material Systems and Structures, 1998, 9, (6), pp. 404-416
    19. Li, J.Y.: ‘Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials’, International Journal of Engineering Science, 2000, 38, (18), pp. 1993-2011
    20. Lin, C.-H., and Muliana, A.: ‘Micromechanical models for the effective time-dependent and nonlinear electromechanical responses of piezoelectric composites’, Journal of Intelligent Material Systems and Structures, 2014, 25, (11), pp. 1306-1322
    21. Lin, C.-H., and Muliana, A.: ‘Micromechanical models for the effective time-dependent and nonlinear electromechanical responses of piezoelectric composites’, Journal of Intelligent Material Systems and Structures, 2013, 25, (11), pp. 1306-1322
    22. Moffett, M. B., et al. (1991). "Characterization of Terfenol-D for magnetostrictive transducers." The Journal of the Acoustical Society of America 89(3): 1448-1455.
    23. Muliana, A., and Li, K.-A.: ‘Time-dependent response of active composites with thermal, electrical, and mechanical coupling effect’, International Journal of Engineering Science, 2010, 48, (11), pp. 1481-1497
    24. Nan, C.-W., Liu, G., and Lin, Y.: ‘Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1−xDyxFe2 and PbZrxTi1−xO3’, Applied Physics Letters, 2003, 83, (21), pp. 4366-4368
    25. Nan, C.W.: ‘Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases’, Phys Rev B Condens Matter, 1994, 50, (9), pp. 6082-6088
    26. Petrov, V., G. Srinivasan, and U. Laletsin, “Magnetoelectric effects in porous ferromagnetic-piezoelectric bulk composites: Experiment and theory.” Physical Review B 75, 174422 (2007)
    27. Ryu, J., Carazo, A.V., Uchino, K., and Kim, H.-E.: ‘Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites’, Japanese Journal of Applied Physics, 2001, 40, (Part 1, No. 8), pp. 4948-4951
    28. Shen, K.-J., and Lin, C.-h.: ‘Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites’, Acta Mechanica, 2021, 232, (3), pp. 983-1003
    29. Shi, Z., Nan, C.W., Liu, J.M., Filippov, D.A., and Bichurin, M.I.: ‘Influence of mechanical boundary conditions and microstructural features on magnetoelectric behavior in a three-phase multiferroic particulate composite’, Physical Review B, 2004, 70, (13), pp. 134417
    30. Srinivas, S., Li, J.Y., Zhou, Y.C., and Soh, A.K.: ‘The effective magnetoelectroelastic moduli of matrix-based multiferroic composites’, Journal of Applied Physics, 2006, 99, (4)
    31. Taylor, R.L., Pister, K.S., and Goudreau, G.L.: ‘Thermomechanical analysis of viscoelastic solids’, International Journal for Numerical Methods in Engineering, 1970, 2, (1), pp. 45-59
    32. Tiersten, H.F.: ‘Electroelastic equations for electroded thin plates subject to large driving voltages’, Journal of Applied Physics, 1993, 74, (5), pp. 3389-3393
    33. Valadkhan, S., et al. (2008). "Review and Comparison of Hysteresis Models for Magnetostrictive Materials." Journal of Intelligent Material Systems and Structures 20(2): 131-142.
    34. Van Run, A.M.J.G., Terrell, D.R., and Scholing, J.H.: ‘An in situ grown eutectic magnetoelectric composite material’, Journal of Materials Science, 1974, 9, (10), pp. 1710-1714
    35. Veerannan, K., and Arockiarajan, A.: ‘Analytical, numerical and experimental studies on effective properties of layered (2–2) multiferroic composites’, Sensors and Actuators A: Physical, 2015, 236, pp. 380-393
    36. Verhoeven, J. D., et al. (1989). "The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy1−xFeytwinned single crystals." Journal of Applied Physics 66(2): 772-779.
    37. Wang, Y., and Weng, G.J.: ‘On Eshelby's S-tensor under various magneto-electro-elastic constitutive settings, and its application to multiferroic composites’, Journal of Micromechanics and Molecular Physics, 2016, 01, (03n04), pp. 1640002
    38. Wang, Y., Su, Y., Li, J., and Weng, G.J.: ‘A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites’, Journal of Applied Physics, 2015, 117, (16)
    39. Wu, T.-L., and Huang, J.: ‘Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases’, International Journal of Solids and Structures - INT J SOLIDS STRUCT, 2000, 37, pp. 2981-3009
    40. Yang, H., Zhang, G., and Lin, Y.: ‘Electrical, magnetic and magnetoelectric properties of laminated 0.65BiFeO3-0.35BaTiO3/BiY2Fe5O12composites’, Smart Materials and Structures, 2015, 24, (6)

    下載圖示
    2026-01-01公開
    QR CODE