簡易檢索 / 詳目顯示

研究生: 林仲懋
Lin, Chung-Mao
論文名稱: 後牙三單位牙橋受力之有限元素分析及相關實驗驗證
Finite Element Analysis and Related Experimental Verification in Three-Unit Posterior Dental Bridge under Loading
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 牙橋電腦斷層掃描有限元素法數位影像相關法壓電材料
外文關鍵詞: Dental bridge, Micro CT, Finite element method, Digital image correlation method, Piezoelectric material
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來貴金屬價格飛漲,為了降低製作牙橋的成本,本研究分別以理論與實驗方法探討當臼齒區的牙橋金屬結構採用空心設計,再填以陶瓷材料時,對其機械強度的影響。牙橋主要的外型係由高解析度電腦斷層掃描儀(Micro CT)建立,由於X光無法穿透真實牙橋,本研究係以蠟製成極相似的模型來掃描建模,並以有限元素法(Finite element method)模擬橋體支架受到不同負載時的應力分布及形變,此研究的負載分成中間橋體受力與三個咬合面受力兩種情況。實驗部分以數位影像相關法(Digital image correlation method)探討牙橋受力後的形變輔以壓電材料探討牙橋內部應力,實驗皆由萬能材料試驗機施力,條件設定與模擬一致。模擬結果顯示牙橋連接體處應力值較高、三個咬合面受力的應力值會大於中間橋體受力、牙橋外部陶瓷應力會大於內部金屬、內部金屬支架所填的陶瓷愈多則兩種材料應力愈大;實驗結果觀察到X方向位移趨勢與模擬一致、實驗後的牙橋在中間橋體有破壞,結果與模擬時預估從咬合面應力較大處開始產生裂縫一致、本研究並獲得未包埋前的壓電特性,之後待包埋進牙橋後獲得相關電荷數據加以對照後即可得知內部應力大小。

    The precious metal prices have soared in recent years. To reduce the production costs of dental bridge, we use theoretical and experimental methods to investigate mechanical strength of the bridge, which is hollow designed in metal bracket and filled with ceramics. The shape of bridge is decided from Micro CT. X-ray is unable to penetrate the bridge, so we use dental bridge made of wax which is very similar to real bridge to scan. After scanning, the figure is used to establish the simulation model. We use Finite element method to calculate von-Mises stress and displacement under different loading. Two different loading conditions including distributive loadings exerted on the middle of the bridge and three occlusal face, respectively, are adopted in analysis. Digital image correlation method is used to investigate deformation and piezoelectric material is used to investigate internal stress of the bridge. The force of the two experiments are given by tensile testing machine and the condition is set to be consistent with simulation. Simulation results show that the stress is bigger at the connector of the bridge. The stress loading on three occlusal face is bigger than that on the middle of the bridge. The stress of external ceramic is bigger than internal metal. The more ceramic filled in internal bridge bracket, the bigger stress is induced in two different materials. It shows that the trend of experimental results including the X-directional displacement and the destruction happened at the middle of the bridge are consistent with simulation results. Pre-embedded piezoelectric material properties is also obtained in this study. As the piezoelectric material is embedded in dental bridge and related charge data is measured, the internal von-Mises stress can be obtained accordingly.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 牙齒構造及牙橋介紹 1 1.3 文獻回顧 7 1.4 研究動機與目的 11 第二章 數位影像相關法及壓電效應簡介 12 2.1 數位影像相關法 12 2.1.1 物體變形前後之相關位置 12 2.1.2 數位影像之相關性 14 2.1.3 找六個參數P ̃的技巧 15 2.1.4 影像內插法 22 2.2 壓電效應簡介 24 第三章 有限元素法模擬 27 3.1 有限元素法簡介 27 3.2 三維有限元素模型建立 28 3.3 材料性質選擇 30 3.4 牙橋橋體幾何型態 32 3.5 邊界與附載條件 34 3.6 元素種類及網格化收斂測試 36 第四章 實驗操作 40 4.1 實驗儀器 40 4.1.1數位影像相關法 40 4.1.2壓電效應 42 4.2 實驗材料 44 4.2.1數位影像相關法 44 4.2.2壓電效應 45 4.3 實驗做法 46 4.3.1數位影像相關法 46 4.3.2壓電效應 48 第五章 結果與討論 50 5.1有限元素模擬 50 5.1.1牙橋內部沒挖洞 50 5.1.2牙橋內部有挖洞 53 5.1.3各種情況之水平方向位移 58 5.2數位影像相關法 61 5.3壓電效應 66 5.3.1壓電材料未放進牙橋 66 5.3.2壓電材料放進牙橋後 72 5.4討論 73 5.4.1牙橋力學分布 73 5.4.2牙橋內部受不同負載 74 5.4.3牙橋內部不同大小 78 5.4.4數位影像相關法 80 第六章 結論與未來展望 84 6.1 結論 84 6.2未來展望 85 參考文獻 86 附錄A:牙橋CAD之建立 91 A-1 微斷層掃描 92 A-2 NRecon轉檔 92 A-3 Mimics影像疊合 93 A-4 Geomagic實體重建 95 A-5 SolidWorks牙橋挖洞 96 附錄B:提供研究上所需材料及儀器之單位 97

    參考文獻
    [1]蔡育倫,"後牙三單位金屬陶瓷牙橋空心設計之變形及強度分析," 國立成功大學機械
    工程學系碩士論文, 2012.
    [2]維基百科, "https://zh.wikipedia.org/wiki/%E7%89%99%E9%BD%92."
    [3]假牙大觀園,
    "http://www.kmuh.org.tw/www/kmcj/data/9103/4904.htm ".
    [4]洪純成,"牙科陶瓷技術學," 合記圖書出版社, 2010.
    [5]H. F. K. a. M. Krah," Keramiken - eine Übersicht,"
    Quintessenz Zahntechnik,vol.27, pp. 668-704,2001.
    [6]P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N.
    Peille, "Mechanical properties and short-term in-vivo
    evaluation of yttrium-oxide-partially-stabilized zirconia," J
    Biomed Mater Res,vol.23,pp. 45-61,1989.
    [7]I. Dion, L. Bordenave, F. Lefebvre, R. Bareille, C. Baquey,
    J. R. Monties, et al.,"Physico-chemistry and cytotoxicity of
    ceramics," Journal of Materials Science: Materials in
    Medicine, vol.5, pp.18-24, 1994.
    [8]A. R. Studart, F. Filser, P. Kocher, and L. J.
    Gauckler,"Fatigue of zirconia under cyclic loading in water
    and its implications for the design of dental bridges,"
    Dental Materials, vol.23, pp.106-114,2007.
    [9]A. R. Studart, F. Filser, P. Kocher, and L. J. Gauckler,"In
    vitro lifetime of dental ceramics under cyclic loading in
    water," Biomaterials, vol.28, pp.2695-705,2007.
    [10]G. D. Quinn, A. R. Studart, C. Hebert, J. R. VerHoef, and D.
    Arola, "Fatigue of zirconia and dental bridge geometry:
    Design implications," Dental Materials, vol.26, pp. 1133-
    1136,2010.
    [11]I. E. Shuman,"Replacement of a tooth with a fiber-reinforced
    direct bonded restoration," Gen Dent, vol.48, pp.314-8,2000.
    [12]H. Fischer, M. Weber, M. Eck, A. Erdrich, and R. Marx,
    "Finite element and experimental analyses of polymer-based
    dental bridges reinforced by ceramic bars," Journal of
    Biomechanics, vol. 37,pp. 289-294,2004.
    [13]I. Lewinstein, L. Banks-Sills, and R. Eliasi, "Finite
    element analysis of a new system (IL) for supporting an
    implant-retained cantilever prosthesis," Int J Oral
    Maxillofac Implants, vol.10, pp.355-66,1995.
    [14]R. L. Sakaguchi, B. S. Wenande, R. Delong, G. C. Anderson,
    and W. H. Douglas, "A piezoelectric film transducer for
    dental occlusal analysis," Clinical Materials, vol.10,
    pp.145-151,1992.
    [15]C. P. Fernandes, P. O. J. Glantz, S. A. Svensson, and A.
    Bergmark, "A novel sensor for bite force determinations,"
    Dental Materials, vol.19, pp.118-126,2003.
    [16]K. Rottner and E. J. Richter, "Effect of occlusal morphology
    on the accuracy of bite force measurements using thin film
    transducers," International Journal of Prosthodontics,
    vol.17, pp.518-523,2004.
    [17]Q. Wang, J. Liu, J. Zhu, Y. Ye, X. Li, and Z. Chen,
    "Piezoelectric and bonding properties of a cement-based
    composite for dental application,"Applied Surface
    Science,vol.255, pp.574-576, 2008.
    [18]劉子玄, "微壓電積層陶瓷電容陣列感測器於咬合力量測," 國立成功大學醫學工程
    學系碩士論文, 2009.
    [19]M. Steiner, M. E. Mitsias, K. Ludwig, and M. Kern, "In vitro
    evaluation of a mechanical testing chewing simulator,"
    Dental Materials, vol. 25, pp. 494-499, 2009.
    [20]D. Raabe, K. Alemzadeh, A. J. L. Harrison, and A. J.
    Ireland, "The chewing robot: A new biologically-inspired way
    to evaluate dental restorative materials," in Engineering in
    Medicine and Biology Society, 2009. EMBC 2009. Annual
    International Conference of the IEEE,pp. 6050-6053,2009.
    [21]陳天賜, "應用數位影像相關法於微試件之測試," 國立成功大學機械工程學系碩士
    論文, 2003.
    [22]李長昇, "應用數位影像相關法研究波紋管之機械行為," 國立成功大學機械工程學
    系碩士論文, 2004.
    [23]白紹邦, "應用數位影像相關法檢測樑損傷之研究," 國立成功大學土木工程學系碩
    士論文, 2012.
    [24]黃品升, "不同光照方式下牙科複合樹脂之聚合收縮探討," 國立成功大學機械工程
    學系碩士論文, 2012.
    [25]W. H. Peters and W. F. Ranson, "Digital imaging techniques
    in experimental stress analysis," Optical Engineering,
    vol.21, pp. 213427-213427,1982.
    [26]W.H. Peters, W.F. Ranson, M.A. Sutton, T.C. Chu and J.
    Anderson, “ Applications of digital correlation methods to
    rigid body mechanics ”, Opt. Eng., Vol.22, pp.738-742, 1983.
    [27]M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, and S.R.
    McNeil, “Application of an optimized digital image
    correlation method to planar deformation analysis ”, Image
    and Vision Computing,vol.4,pp.143-150,1986.
    [28]D.B. Carl, “ Bicubic spline interpolation ”, Journal of
    Mathematics and Physics, Vol. 41, pp.212-218,1962.
    [29]周卓明, "壓電力學 Piezoelectricity mechanics," 全華圖書出版社,
    2003.
    [30]維基百科,
    "https://zh.wikipedia.org/wiki/%E5%A3%93%E9%9B%BB%E6%95%88%E6%8
    7%89."
    [31]R. W. Clough, "The finite element method in plane stress
    analysis," Proceedings of American Society of Civil
    Engineers, 2nd Conference on Electronic
    Computation,Pittsburgh,PA,pp.345-378, 1960.
    [32]A. Hrennikoff, "Solution of problems of elasticity by the
    frame-work method," American Society of Mechanical Engineers
    vol.A8, pp. 169-175,1941.
    [33]R. Courant, "Variational methods for the solution of
    problems of equilibrium and vibrations," Bulletin of the
    American Mathematical Society, vol.49, pp. 1-23, 1943.
    [34]"Moaveni : Finite Element Analysis-Theory and Application
    with ANSYS.( 林政仁、陳新郁譯,有限元素分析-理論與應用ANSYS。)," 高
    立圖書有限公司, 2001.
    [35]劉晉奇、禇晴輝, "Engineering Applications of Finite
    ElementAnalysis with ANSYS.有限元素分析與ANSYS的工程應用," 滄海書
    局, 2006.
    [36]ZHANG Er-hong,SONG Xiao-fei,HAN Yi-gang,YIN Ling, "Vita Mark
    Ⅱ牙體修復材料在體外磨削修整中的應力有限元分析," 2007.
    [37]Y. Deng, B. R. Lawn, and I. K. Lloyd, "Characterization of
    damage modes in dental ceramic bilayer structures," Journal
    of Biomedical Materials Research, vol. 63, pp. 137-145,
    2002.
    [38]S. Varga, S. Spalj, M. L. Varga, S. A. Milosevic, S.
    Mestrovic, and M. Slaj, "Maximum voluntary molar bite force
    in subjects with normal occlusion," European Journal of
    Orthodontics, vol.33, pp.427-433, 2011.

    下載圖示 校內:2015-07-25公開
    校外:2015-07-25公開
    QR CODE