| 研究生: |
林仲懋 Lin, Chung-Mao |
|---|---|
| 論文名稱: |
後牙三單位牙橋受力之有限元素分析及相關實驗驗證 Finite Element Analysis and Related Experimental Verification in Three-Unit Posterior Dental Bridge under Loading |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 牙橋 、電腦斷層掃描 、有限元素法 、數位影像相關法 、壓電材料 |
| 外文關鍵詞: | Dental bridge, Micro CT, Finite element method, Digital image correlation method, Piezoelectric material |
| 相關次數: | 點閱:129 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來貴金屬價格飛漲,為了降低製作牙橋的成本,本研究分別以理論與實驗方法探討當臼齒區的牙橋金屬結構採用空心設計,再填以陶瓷材料時,對其機械強度的影響。牙橋主要的外型係由高解析度電腦斷層掃描儀(Micro CT)建立,由於X光無法穿透真實牙橋,本研究係以蠟製成極相似的模型來掃描建模,並以有限元素法(Finite element method)模擬橋體支架受到不同負載時的應力分布及形變,此研究的負載分成中間橋體受力與三個咬合面受力兩種情況。實驗部分以數位影像相關法(Digital image correlation method)探討牙橋受力後的形變輔以壓電材料探討牙橋內部應力,實驗皆由萬能材料試驗機施力,條件設定與模擬一致。模擬結果顯示牙橋連接體處應力值較高、三個咬合面受力的應力值會大於中間橋體受力、牙橋外部陶瓷應力會大於內部金屬、內部金屬支架所填的陶瓷愈多則兩種材料應力愈大;實驗結果觀察到X方向位移趨勢與模擬一致、實驗後的牙橋在中間橋體有破壞,結果與模擬時預估從咬合面應力較大處開始產生裂縫一致、本研究並獲得未包埋前的壓電特性,之後待包埋進牙橋後獲得相關電荷數據加以對照後即可得知內部應力大小。
The precious metal prices have soared in recent years. To reduce the production costs of dental bridge, we use theoretical and experimental methods to investigate mechanical strength of the bridge, which is hollow designed in metal bracket and filled with ceramics. The shape of bridge is decided from Micro CT. X-ray is unable to penetrate the bridge, so we use dental bridge made of wax which is very similar to real bridge to scan. After scanning, the figure is used to establish the simulation model. We use Finite element method to calculate von-Mises stress and displacement under different loading. Two different loading conditions including distributive loadings exerted on the middle of the bridge and three occlusal face, respectively, are adopted in analysis. Digital image correlation method is used to investigate deformation and piezoelectric material is used to investigate internal stress of the bridge. The force of the two experiments are given by tensile testing machine and the condition is set to be consistent with simulation. Simulation results show that the stress is bigger at the connector of the bridge. The stress loading on three occlusal face is bigger than that on the middle of the bridge. The stress of external ceramic is bigger than internal metal. The more ceramic filled in internal bridge bracket, the bigger stress is induced in two different materials. It shows that the trend of experimental results including the X-directional displacement and the destruction happened at the middle of the bridge are consistent with simulation results. Pre-embedded piezoelectric material properties is also obtained in this study. As the piezoelectric material is embedded in dental bridge and related charge data is measured, the internal von-Mises stress can be obtained accordingly.
參考文獻
[1]蔡育倫,"後牙三單位金屬陶瓷牙橋空心設計之變形及強度分析," 國立成功大學機械
工程學系碩士論文, 2012.
[2]維基百科, "https://zh.wikipedia.org/wiki/%E7%89%99%E9%BD%92."
[3]假牙大觀園,
"http://www.kmuh.org.tw/www/kmcj/data/9103/4904.htm ".
[4]洪純成,"牙科陶瓷技術學," 合記圖書出版社, 2010.
[5]H. F. K. a. M. Krah," Keramiken - eine Übersicht,"
Quintessenz Zahntechnik,vol.27, pp. 668-704,2001.
[6]P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N.
Peille, "Mechanical properties and short-term in-vivo
evaluation of yttrium-oxide-partially-stabilized zirconia," J
Biomed Mater Res,vol.23,pp. 45-61,1989.
[7]I. Dion, L. Bordenave, F. Lefebvre, R. Bareille, C. Baquey,
J. R. Monties, et al.,"Physico-chemistry and cytotoxicity of
ceramics," Journal of Materials Science: Materials in
Medicine, vol.5, pp.18-24, 1994.
[8]A. R. Studart, F. Filser, P. Kocher, and L. J.
Gauckler,"Fatigue of zirconia under cyclic loading in water
and its implications for the design of dental bridges,"
Dental Materials, vol.23, pp.106-114,2007.
[9]A. R. Studart, F. Filser, P. Kocher, and L. J. Gauckler,"In
vitro lifetime of dental ceramics under cyclic loading in
water," Biomaterials, vol.28, pp.2695-705,2007.
[10]G. D. Quinn, A. R. Studart, C. Hebert, J. R. VerHoef, and D.
Arola, "Fatigue of zirconia and dental bridge geometry:
Design implications," Dental Materials, vol.26, pp. 1133-
1136,2010.
[11]I. E. Shuman,"Replacement of a tooth with a fiber-reinforced
direct bonded restoration," Gen Dent, vol.48, pp.314-8,2000.
[12]H. Fischer, M. Weber, M. Eck, A. Erdrich, and R. Marx,
"Finite element and experimental analyses of polymer-based
dental bridges reinforced by ceramic bars," Journal of
Biomechanics, vol. 37,pp. 289-294,2004.
[13]I. Lewinstein, L. Banks-Sills, and R. Eliasi, "Finite
element analysis of a new system (IL) for supporting an
implant-retained cantilever prosthesis," Int J Oral
Maxillofac Implants, vol.10, pp.355-66,1995.
[14]R. L. Sakaguchi, B. S. Wenande, R. Delong, G. C. Anderson,
and W. H. Douglas, "A piezoelectric film transducer for
dental occlusal analysis," Clinical Materials, vol.10,
pp.145-151,1992.
[15]C. P. Fernandes, P. O. J. Glantz, S. A. Svensson, and A.
Bergmark, "A novel sensor for bite force determinations,"
Dental Materials, vol.19, pp.118-126,2003.
[16]K. Rottner and E. J. Richter, "Effect of occlusal morphology
on the accuracy of bite force measurements using thin film
transducers," International Journal of Prosthodontics,
vol.17, pp.518-523,2004.
[17]Q. Wang, J. Liu, J. Zhu, Y. Ye, X. Li, and Z. Chen,
"Piezoelectric and bonding properties of a cement-based
composite for dental application,"Applied Surface
Science,vol.255, pp.574-576, 2008.
[18]劉子玄, "微壓電積層陶瓷電容陣列感測器於咬合力量測," 國立成功大學醫學工程
學系碩士論文, 2009.
[19]M. Steiner, M. E. Mitsias, K. Ludwig, and M. Kern, "In vitro
evaluation of a mechanical testing chewing simulator,"
Dental Materials, vol. 25, pp. 494-499, 2009.
[20]D. Raabe, K. Alemzadeh, A. J. L. Harrison, and A. J.
Ireland, "The chewing robot: A new biologically-inspired way
to evaluate dental restorative materials," in Engineering in
Medicine and Biology Society, 2009. EMBC 2009. Annual
International Conference of the IEEE,pp. 6050-6053,2009.
[21]陳天賜, "應用數位影像相關法於微試件之測試," 國立成功大學機械工程學系碩士
論文, 2003.
[22]李長昇, "應用數位影像相關法研究波紋管之機械行為," 國立成功大學機械工程學
系碩士論文, 2004.
[23]白紹邦, "應用數位影像相關法檢測樑損傷之研究," 國立成功大學土木工程學系碩
士論文, 2012.
[24]黃品升, "不同光照方式下牙科複合樹脂之聚合收縮探討," 國立成功大學機械工程
學系碩士論文, 2012.
[25]W. H. Peters and W. F. Ranson, "Digital imaging techniques
in experimental stress analysis," Optical Engineering,
vol.21, pp. 213427-213427,1982.
[26]W.H. Peters, W.F. Ranson, M.A. Sutton, T.C. Chu and J.
Anderson, “ Applications of digital correlation methods to
rigid body mechanics ”, Opt. Eng., Vol.22, pp.738-742, 1983.
[27]M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, and S.R.
McNeil, “Application of an optimized digital image
correlation method to planar deformation analysis ”, Image
and Vision Computing,vol.4,pp.143-150,1986.
[28]D.B. Carl, “ Bicubic spline interpolation ”, Journal of
Mathematics and Physics, Vol. 41, pp.212-218,1962.
[29]周卓明, "壓電力學 Piezoelectricity mechanics," 全華圖書出版社,
2003.
[30]維基百科,
"https://zh.wikipedia.org/wiki/%E5%A3%93%E9%9B%BB%E6%95%88%E6%8
7%89."
[31]R. W. Clough, "The finite element method in plane stress
analysis," Proceedings of American Society of Civil
Engineers, 2nd Conference on Electronic
Computation,Pittsburgh,PA,pp.345-378, 1960.
[32]A. Hrennikoff, "Solution of problems of elasticity by the
frame-work method," American Society of Mechanical Engineers
vol.A8, pp. 169-175,1941.
[33]R. Courant, "Variational methods for the solution of
problems of equilibrium and vibrations," Bulletin of the
American Mathematical Society, vol.49, pp. 1-23, 1943.
[34]"Moaveni : Finite Element Analysis-Theory and Application
with ANSYS.( 林政仁、陳新郁譯,有限元素分析-理論與應用ANSYS。)," 高
立圖書有限公司, 2001.
[35]劉晉奇、禇晴輝, "Engineering Applications of Finite
ElementAnalysis with ANSYS.有限元素分析與ANSYS的工程應用," 滄海書
局, 2006.
[36]ZHANG Er-hong,SONG Xiao-fei,HAN Yi-gang,YIN Ling, "Vita Mark
Ⅱ牙體修復材料在體外磨削修整中的應力有限元分析," 2007.
[37]Y. Deng, B. R. Lawn, and I. K. Lloyd, "Characterization of
damage modes in dental ceramic bilayer structures," Journal
of Biomedical Materials Research, vol. 63, pp. 137-145,
2002.
[38]S. Varga, S. Spalj, M. L. Varga, S. A. Milosevic, S.
Mestrovic, and M. Slaj, "Maximum voluntary molar bite force
in subjects with normal occlusion," European Journal of
Orthodontics, vol.33, pp.427-433, 2011.