簡易檢索 / 詳目顯示

研究生: 彭嘉德
Peng, Jia-De
論文名稱: 以微波輔助水熱/水熱法所製備之高表面積中孔洞二氧化鈦球於染料敏化太陽能電池之應用
High-surface-Area Mesoporous Titanium Dioxide Spheres Synthesized by Microwave-Assisted Hydrothermal / Hydrothermal Treatments for Dye-Sensitized Solar Cell
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 二氧化鈦染料敏化太陽能電池散射性球狀微波輔助水熱法
外文關鍵詞: TiO2, dye-sensitized solar cell, scattering property, spheres, microwave-assisted hydrothermal treatment
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本研究利用KCl(aq)濃度與水熱環境改變,以水熱反應合成出中孔洞二氧化鈦球,並經由SEM、TEM、XRD、BET、EDS鑑定。在高鹽類濃度時(K殘留>3%),二氧化鈦球出擁有多樣的結構變化、純Anatase、高表面積、中孔洞及良好熱穩定性,然而電池效能僅有0.02%。經由電化學頻譜阻抗分析(EIS),二氧化鈦層間內電阻過大,推測是K殘留過多所致。為克服此項問題,改以微量鹽類濃度(K殘留<0.3%),成功將效能提升至5.23%。

    由於水熱法反應時間冗長,為了進一步縮短時間,本研究利用新開發的微波輔助水熱製程,改變微波處理的時間、功率及溫度去探討對於合成二氧化鈦顆粒的影響,並藉由TEM、XRD鑑定,其具有的晶體結構與顆粒尺寸均佳,光電轉換效能可達4.88%,並將合成時間由16小時縮短至80分鐘。

    為了有效發揮二氧化鈦球高表面積及散射力(球徑>450nm)之特色,將水熱/微波輔助水熱法合成之二氧化鈦球作散射層與商用品CCIC 400nm進行評比。水熱法合成之二氧化鈦球效能為6.38%優於商用品CCIC 400nm的5.71%。由入射單色光光電轉化效率(IPCE)可知,於長波長範圍(600-800nm) 水熱法合成之二氧化鈦球明顯高於商用品CCIC 400nm,成功發揮其高表面積特性。而微波輔助水熱法效能則是5.45%,經由EIS分析可知,其二氧化鈦層間內電阻過大,推測是微波快速結晶導致晶界障礙增加所致。

    Abstract
    In this study, the mesoporous titanium dioxide spheres were synthesized by hydrothermal treatment with changing the potassium chloride concentration and the hydrothermal environment and were tested through SEM, TEM, XRD, BET and EDS. In the high salt concentration(potassium residue > 3%), the titanium dioxide spheres has variety of structures, pure anatase, high surface area, mesoporous and good thermal stability; however, the light-to-electricity conversion efficiency is only 0.02%.By electrochemical impedance spectrum analysis (EIS), internal resistance is too large, presumably due to excessive residual potassium ions. To overcome this problem, the researcher changed it to a low concentration of salts (potassium residue <0.3%) and the success of the performance increased to 5.23%.

    Owing to long hydrothermal process time, in order to shorten the time, this study used a newly developed microwave-hydrothermal process, changing the microwave treatment time, power and temperature to explore the synthesis of titanium dioxide particles impact. And by SEM, TEM, XRD, BET identification, it has a crystal structure and the particle sizes are good. Photoelectric conversion efficiency is up to 4.88%, and the reaction time changed from 16 hours to 80 minutes.

    In order to prove whether the characteristics of the high surface area titanium dioxide and scattering force the sphere (the spherical diameter> 450nm) have practical values, the commercial product CCIC 400nm was served as a comparison. The effectiveness of hydrothermal synthesis of one of the titanium dioxide was 6.38%, which is better than 5.71% for CCIC 400nm. Incident monochromatic light by the photoelectric conversion efficiency (IPCE) shows that in the long-wavelength range (600-800nm) hydrothermal synthesis of titanium dioxide was significantly higher than the business supplies CCIC 400nm, successfully achieving high surface area characteristics. The effectiveness of microwave-assisted hydrothermal method was 5.45%. By the EIS analysis, the titanium dioxide layer between the internal resistance was too large. It is inferred that it might be due to microwave rapid crystallization that led to the increase of grain boundary barrier.

    目錄 誌謝 I 中文摘要 II 英文摘要 III 目錄 V 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 3 1.2.1 矽基型太陽能電池 3 1.2.2 化合物半導體型太陽能電池 5 1.2.3 有機半導體型太陽能電池 5 1.3研究動機與目的 8 第二章 文獻回顧與理論說明 9 2.1 染料敏化太陽能電池(dye-sensitized solar cell, DSSC)9 2.1.1 染料敏化太陽能電池工作原理 12 2.1.2 染料敏化太陽能電池構造 14 2.1.3 影響染料敏化太陽能電池光電轉換效率之因素 18 2.2 TiO2散射層的文獻回顧 22 第三章 實驗方法 28 3.1 實驗藥品 28 3.2 中孔洞TiO2球製備之流程 29 3.2.1 水熱法合成中孔洞TiO2球 29 3.2.2 微波輔助水熱法合成中孔洞TiO2球 34 3.3 材料特性分析 36 3.3.1 場發射掃描式電子顯微鏡(FESEM)36 3.3.2 穿透式電子顯微鏡(TEM)36 3.3.3 X-射線繞射光譜(XRD)36 3.3.4 光電極膜厚量測 38 3.3.5 氮氣等溫吸附與脫附 38 3.3.6 光電轉化效率(IPCE)41 3.4 染料敏化太陽能電池組裝與測試 42 3.4.1 染料的配製 42 3.4.2 電解質的配製 42 3.4.3 TiO2醬料的製作 42 3.4.4 白金對電極的製作 42 3.4.5 TiO2光陽極的製作 43 3.4.6 染料敏化太陽能電池的封裝 45 3.4.7 染料敏化太陽能電池的效能測試 46 第四章 結果與討論 47 4.1 水熱法合成TiO2球 49 4.1.1 高鹽類濃度下的物性變化(產物中K的殘留量高於3%) 49 4.1.2 微量鹽類濃度下的物性變化(產物中K的殘留量低於0.3%)63 4.2 微波輔助水熱法合成TiO2球 70 4.2.1 微量鹽類濃度下的物性變化 70 4.2.2 物性比較(水熱法 vs. 微波輔助水熱法)76 4.2.3 染料敏化太陽能電池測試結果(水熱法 vs. 微波輔助水熱法)77 4.3 作散射層比較 80 4.3.1 染料敏化太陽能電池測試結果 80 4.3.2 IPCE分析 83 第五章 結論與建議 85 第六章 參考文獻 86

    1. M. Grätzel, “Photoelectrochemical cells”, Nature. 414 (2001) 338-344.
    2. 黃建昇, 結晶矽太陽電池發展近況, 工業材料雜誌 2003, 203 期, 150.
    3. 查丁壬彙編, “認識太陽能電池”, 中華太陽能聯誼會 2003
    4. 郭明村, 薄膜太陽電池發展近況, 工業材料雜誌 2003, 203 期, 138.
    5. K. Hara, et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Solar Energy Materials & Solar Cells 64 (2000) 115.
    6. F. Hurd, et al., “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 44 (1940) 865-873.
    7. G. Oster, et al., “Dye-sensitized photooxidation” J. Am. Chem. Soc. 81 (1959) 5095-5099.
    8. S. Chaberek, et al., “Dye-sensitized photopolymerization processes. I.” J. Phys. Chem. 69 (1965) 641-647.
    9. S. Chaberek, et al., “Dye-sensitized photopolymerization processes. II.” J. Phys. Chem. 69 (1965) 647-656.
    10. S. Chaberek, et al., “Dye-sensitized photopolymerization processes. III.” J. Phys. Chem. 69 (1965) 2834-2841.
    11. S. Chaberek, et al., “Dye-sensitized photopolymerization processes. IV.” J. Phys. Chem. 69 (1965) 2842-2848.
    12. Kearns, et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. I” J. Am. Chem. Soc. 89 (1967) 5455-5456.
    13. Kearns, et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions. II” J. Am. Chem. Soc. 89 (1967) 5456-5457.
    14. H. Tsubomura, et al., “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature. 261 (1976) 402
    15. B. O’Regan, et al., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature. 353 (1991) 737-740.
    16. M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”Inorg. Chem. 44 (2005) 6841-6851.
    17. Z.-S. Wang, et al., “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency” Chem. Mater. 18 (2006) 2912-2916
    18. H. Tsubomura, et al., “Dye sensitised zinc oxide / aqueous electrolyte / platinum photocell” , Nature 261 (1976) 402.
    19. K. Kalyanasundaram, et al., “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. Rev. 77 (1998) 347.
    20. M. K. Nazeeruddin, et al., “Conversion of light to electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on nanocrystalline TiO2 electrodes” , J. Am. Chem. Soc. 115 (1993) 6382.

    21. J. Wienke, et al., “Dye-semsitized nanocrystalline TiO2 solar cells on flexible substrates”, ECN contributions 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna 6 - 10 July 1998.
    22. Christophe J. Barbe, et al., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc. 80 (1997) 3157.
    23. K Tennakone, et al., “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex”, J. Phys. D: Appl. Phys. 31 (1998) 1492.
    24. M. K. Nazeeruddin, et al., “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex”, Chem. Comm. (1997) 1705.
    25. K Hara, et al., “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%”, Chem. Comm. (2001) 569.
    26. 角野 裕康, et al., “Dye-sensitized solar cells using solid electrolytes”, 東芝レビュー 56 (2001) 7.
    27. Anders Hagfeldt, et al., “A new method for manufacturing nanostructured electrodes on plastic substrates”, Nano Letters 1 (2001) 97.
    28. Wataru Kubo, et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator”, Chem. Comm. (2002) 374.
    29. 原 浩二郎, “有機色素増感太陽電池で変換効率7.5%の世界 最高性能を達成”, AIST Today 12 (2002) 14.
    30. Nick Vlachopoulos, et al., “Very Efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. 110 (1988) 1216.
    31. M Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. & Photobio. A: Chem. 164 (2004) 3.
    32. 彭懷夫, “中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用”, 國立東華大學碩士論文 (2004)
    33. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” J. Photochem. Photobio. A 164 (2004) 3-14.
    34. A. J. Frank, et al., “Comparison of dye-sensitized rutile- and anatase-based Ti TiO2O2 solar cells”, J. Phys. Chem. B 104 (2000) 8989.
    35. J. Frank, et al., “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 (1999) 3308.
    36. Shozo Yanagida, et al., “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating”, Sol. Energy Mater. Sol. Cells 76 (2003) 3.
    37. S. Nakade, et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells”, J. Phys. Chem. B 106 (2002) 10004.
    38. K. Hara, et al., "Molecular design of coumarin dyes for efficient dye-sensitized solar cells," Journal of Physical Chemistry B, vol. 107, pp. 597-606, 2003.
    39. J. Wu, et al., "A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells," Advanced Materials, vol. 19, pp. 4006-4011, 2007.
    40. S. Huang, et al., "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells," Journal of Physical Chemistry B, vol. 101, pp. 2576-2582, 1997.
    41. H. Kusama and H. Arakawa, "Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance," Journal of Photochemistry and Photobiology A: Chemistry, vol. 160, pp. 171-179, 2003.
    42. H. Kusama and H. Arakawa, "Influence of aminothiazole additives in I-/I3-redox electrolyte solution on Ru (II)-dye-sensitized nanocrystalline TiO2 solar cell performance," Solar energy materials and solar cells, vol. 82, pp. 457-465, 2004.
    43. K. Imoto, et al., "High-performance carbon counter electrode for dye-sensitized solar cells," Solar energy materials and solar cells, vol. 79, pp. 459-469, 2003.
    44. T. Murakami, et al., "Highly efficient dye-sensitized solar cells based on carbon black counter electrodes," Journal of The Electrochemical Society, vol. 153, p. A2255, 2006.
    45. W. J. Lee, et al., "Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes," Acs Applied Materials & Interfaces, vol. 1, pp. 1145-1149, 2009.
    46. A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems” Chem. Rev. 95 (1995) 49-68.
    47. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices” Coord. Chem. Rev. 177 (1998) 347-414.
    48. M. Grätzel﹐“Mesoporous oxide junctions and nanostructured solar cells”Current Opin. Colloid Interf. Sci. 4 (1999) 314-321.
    49. D. Cahen, et al., “Nature of photovoltaic action in dye-sensitized solar cells” J. Phys. Chem. B 104 (2000) 2053-2059.
    50. X.-T. Zhang, et al., “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films” Sol. Energy Mater. Sol. Cells. 81 (2004) 197–203
    51. M. Grätzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells” Prog. Photovolt. Res. Appl. 8 (2000) 171-185.
    52. Y. Ohsaki, et al., “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization” Phys. Chem. Chem. Phys. 7 (2005) 4157-4163.
    53. Y. Suzuki, et al., “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells” Cent. Eur. J. Chem. 4 (2006) 476–488.
    54. P. V. Kamat, et al., “Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters” J. Phys. Chem. C 2008, 112, 18737.
    55. P. R. Yu, et al., “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots” Phys. Chem. B 2006, 110, 25451.
    56. P. Wang, et al., “TiO2 Surface Modification and Characterization with Nanosized PbS in Dye-Sensitized Solar Cells” J. Phys. Chem. B 2006, 110, 14406.
    57. I. Robel, et al., “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 2006, 128, 2385.
    58. Z. Wang, et al., "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordination Chemistry Reviews, vol. 248, pp. 1381-1389, 2004.
    59. S. Hore, et al., "Influence of scattering layers on efficiency of dye-sensitized solar cells," Solar energy materials and solar cells, vol. 90, pp. 1176-1188, 2006.
    60. J. Ferber and J. Luther, "Computer simulations of light scattering and absorption in dye-sensitized solar cells," Sol. Energy Mater. Sol. Cells 1998, 54, 265.
    61. Z.-S. Wang, H. Kawauchi, et al., "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coord. Chem. Rev. 2004, 248, 1381.
    62. S. Hore, et al., "Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficiency in dye-sensitized solar cells," Chem. Commun. 2005, 2011.
    63. J.-H. Yoon, et al., "TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells," J. Photochem. Photobiol. A: Chem. 2006, 180, 184.
    64. S. Hore, et al., "Influence of scattering layers on efficiency of dye-sensitized solar cells," Sol. Energy Mater. Sol. Cells 2006, 90, 1176.
    65. H. C. van de Hulst, Light Scattering by Small Particles,Wiley, New York 1957.
    66. H. Koo, et al., "Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells," Advanced Materials, vol. 20, pp. 195-199, 2008
    67. J. Qian, et al., " TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells," Advanced Materials, vol. 21, pp. 3663-3667, 2009.
    68. K. Nakayama, et al., "Electrophoretically Deposited TiO2 Nanotube Light-Scattering Layers of Dye-Sensitized Solar Cells," Japanese journal of applied physics, vol. 47, pp. 6610-6614, 2008.
    69. Z. Tian, et al., "Multilayer structure with gradual increasing porosity for dye-sensitized solar cells," Applied Physics Letters, vol. 94, p. 031905, 2009.
    70. R.A. Spurr and H. Myers. “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer” Anal. Chem. 29 (1957) 760-762.
    71. G. Ertl, et al., Handbook of heterogeneous catalysis: VCH Weinheim, 1997.
    72. 張正華, et al., "有機與塑膠太陽能電池," 五南出版社, 台北市, 民96.
    73. Y. Wang, et al., "Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructures," J. Phys. Chem. C 111 (2007) 2709–2714.
    74. T-D N Phan, et al., "A simplehydrothermalpreparationofTiO2 nanomaterialsusingconcentrated hydrochloricacid," J of Crystal Growth 312 (2009) 79–85.
    75. Watson, S., et al., "Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis," J. Nanopart. Res. 2004, 6, 193.
    76. Mingmei Wu, Gang Lin, Dihu Chen, Guangguo Wang, Dian He, Shouhua Feng, Ruren Xu, Chem. Mater. 2002, 14, 1974-1980
    77. Li , X Duan, et al., "Morphology controllable synthesis of TiO2 by a facile hydrothermal process," Materials Letters 62 (2008) 4035–4037.
    78. Y. Li, J. Liu, and Z. Jia, et al., "Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process," Materials Letters, vol. 60, no. 13-14, pp. 1753–1757, 2006.
    79. K.R. Bae, et al., "Structure control of nanocrystalline TiO2 for the dye-sensitized solar cell application," Current Applied Physics, 10 (2010) S406–S409
    80. J.P. Nikkanen, et al., "The effect of acidity in low-temperature synthesis of titanium dioxide," Journal of Crystal Growth 304 180 (2007) 179–183

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE