研究生: |
秦興國 Chin, Xing-Guo |
---|---|
論文名稱: |
二氧化鈦奈米粒子摻混於有機感光層以提升
高分子/富勒烯單層異質接面太陽能電池之
光電轉換效率 Efficiency Enhancement of Polymer/Fullerene Bulk-Heterojunction Solar Cell by Blending TiO2 Nanoparticles into Photo-active Materials |
指導教授: |
溫添進
Wen, Ten-Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 有機太陽能電池 、單層異質接面 、二氧化鈦奈米粒子 |
外文關鍵詞: | Titanium dioxide, PCBM, P3HT, Organic Solar Cell, Bulk-Heterojunction |
相關次數: | 點閱:85 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本篇論文之研究,我們將無機半導體二氧化鈦奈米粒子摻混於poly(3-hexylthiophene) (P3HT)和C60之衍生物[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)以1:1重量比混合所組成之有機感光層中,二氧化鈦奈米粒子具有高電子傳導性質及高表面積,故常被應用於作為染料光敏化太陽能電池中之電子接受體,實驗結果顯示相較於未摻混二氧化鈦奈米粒子之基本元件,於A.M.1.5G、100 mW/cm2模擬太陽光下,摻混二氧化鈦奈米粒子於感光層使元件之串聯電阻隨二氧化鈦奈米粒子濃度之增加而大幅降低、填充因子隨二氧化鈦奈米粒子濃度之增加而提升,開路電壓隨二氧化鈦奈米粒子濃度之改變而增加超過0.1 eV,短路電流則受二氧化鈦奈米粒子濃度影響,由SEM圖觀察到感光層表面有二氧化鈦奈米粒子之聚集形成,我們推測加入二氧化鈦奈米粒子改變了熱蒸鍍鋁陰極和感光層間之表面型態以及電子傳輸性質,降低了電子傳遞至鋁電極之能障,另一方面,二氧化鈦奈米粒子之高折射率特性有可能增加入射光被限制於元件內部的機率,增加載子生成量,改善元件整體之光電轉換效率,於最佳化二氧化鈦奈米粒子摻混濃度時元件整體的光電轉換效率有50 %之提升。本研究針對效率提升之原因做探討,包括二氧化鈦奈米粒子如何對影響元件之串聯電阻、短路電流、開路電壓、填充因子以及光學性質,希望能提供一個有效方法提升有機共軛高分子太陽能電池之光電轉換效率。
In this work, we report enhanced power conversion efficiency of polymer based solar cell using blend films of poly(3-hexylthiophene)(P3HT), [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) and TiO2 nanoparticles. TiO2 nanoparticle is a promising candidate as electron acceptor for organic solar cell because of its good electron transport property. From J-V characteristics of devices under (A.M.1.5) simulated solar illumination (100 mW/cm2), we observed the devices with TiO2 nanoparticles showed reduced series resistance, increased open circuit voltage and improved fill factor when increasing the concentration of TiO2 nanoparticles. The S.E.M cross-sectional images revealed the aggregation of TiO2 nanoparticles formed on the surface of active layer. Thus the improved power conversion efficiency of solar cell is attributed to the modification of electron-collecting contact causing reduced energy barrier for electron transport between active-layer and aluminum electrode. Furthermore, the highly refractive TiO2 nanoparticles may increase the probability of internal light-trapping by scattering the light reflected from metal electrode, causing more photo-induced charge carrier to be generated in device. The enhanced open circuit voltage was likely to result from the reduced electron barrier height between aluminum electrode and TiO2 nanoparticles. A two fold enhancement in power conversion efficiency is achieved at optimized doping concentration of TiO2 nanoparticles.
1.S.E. Shaheen, D.S. Ginley, G.E. Jabbour, “Organic based photovoltaics: Toward low-cost power generation”, Mrs. Bull., 30, pp.10-18(2005).
2.B. O'Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films”, Nature, 353, pp.737-740(1999).
3.A.Yakimov, S. R. Forrest, Appl. Phys. Lett., “High photovoltage multiple- heterojunction organic solar cells incorporating interfacial metallic nanoclusters”, 80, pp.1667-1669(2002).
4.S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, ”Fabrication of bulk heterojunction plastic solar cell by screen printing”, Appl. Phys. Lett., 79, pp.2996-2998(2001).
5.J. Bharathan, Y. Yang, ”Polymer electroluminescent devices processed by inkjet priting:1. Polymer light emitting logo”, Appl. Phys. Lett., 72, pp.2660-2662(1998).
6.C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen, N. S. Sariciftci, “Realization of large area flexible fullerene-conjugated polymer photocells:A route to plastic solar cells”, Synth. Met., 102, pp.861-864(1999)
7.P. Peumans, S.R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl, Phys. Lett., 79, pp.126-128 (2001).
8.H. Hoppe, N.S. Sariciftci, “Organic solar cells:an overview”, J. Mater. Res., 19, pp.1924-1945(2004).
9.V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, J.Appl, Phys, 94, pp.6849-6854(2003).
10.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, ”Origin of the Open Circuit Voltage of Plastic Solar Cells”, Adv. Fun. Mater., 11, pp.374-380(2001).
11.S.R. Forrest, “The limits to organic photovoltaic cell efficiency”, Mrs Bull., 30, pp.28-32 (2005).
12.C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics”, SPRINGER(2003).
13.H. Kallmans, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys, 30, pp.585-586(1958).
14.A. K. Ghosh, T. Feng, “Merocyanine organic solar cells”, J.Appl, Phys, 49, pp. 5982-5989(1978).
15.C.W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett., 48, pp.183-185(1986).
16.G. Yu, C. Zhang, A.J. Heeger, “Dual-function semiconducting polymer devices light-emitting and photodetecting diodes”, Appl. Phys. Lett., 64, pp.1540-1542(1993).
17.J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell”, Appl. Phys. Lett., 68, pp.3120-3122(1996).
18.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258, pp.1474-1476 (1992).
19.N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, “Semiconducting polymer-buckmisterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells”, Appl. Phys. Lett., 62, pp.585-587(1993).
20.G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, 270, pp.1789-1791(1995).
21.S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5 % efficient organic plastic solar cell”, Appl. Phys. Lett., 78, pp.841-843(2001).
22.F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater., 13, pp.85-88(2003).
23.G. Li, V. Shortriya, Y. Yao and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J. Appl. Phys, 98, pp. 043704-1(2005).
24.G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, ”High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., 4, pp.864-869(2005).
25.W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, ”Thermally stable, efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., 15, pp1617-1612(2005).
26.L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullrene bulk heterojunction solar cell”, Appl, Phys. Lett., 88, pp.093511-1-093511-3.(2006).
27.M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C Waldauf, A. J. Heeger, C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Adv. Mater, 18, pp.789-794(2006).
28.C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, “Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells”, Chem. Phys. Lett., 384, pp.372-375(2004)
29.W.J.E. Beek, Martijn, M. Wienk, A.J. Janssen, ”Hybrid polymer solar cell based on zinc oxide”, J. Mater. Chem., 15, pp.2985-2988(2005)
30.W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells”, Science, 29, pp. 2425-2427(2002).
31.A. C. Arango, L. R. Johnson, V. N. Bliznyuk, Z. Schlesinger, S. A. Carter, H. Hörhold, “Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion”, Adv. Mater., 12, pp.1689-1692(2000)
32.G. P. Bartholomew, A. J. Heeger, “Infiltration of regioregular Poly- [2,2-(3-hexylthiopene)] into random nanocrystalline TiO2 networks”, Adv. Fun. Mater., 15, pp.677-682(2005).
33.D.J. Milliron, L. Gur, A.P. Alivisatos, “Hybrid organic nanocrystal solar cells”, Mrs. Bull., 30, pp.41-44(2005).
34.P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H. van Gennip, P. Jonkheijm, R.A.J. Janssen, “Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction”, Adv. Mater., 15, pp.118-121(2003).
35.M. Svensson, F. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. Inganäs, M.R. Andersson, “High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative”, Adv. Mater., 15, pp.988-991(2003).
36.D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites”, Nanotechnology, 15, pp. 1317-1323(2004).
37.Y. kim, S. A. Choulis, J. Nelson and D.C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Appl. Phys. Lett., 86, pp.063502-1(2005).
38.J. Huang, G. Li, Y. Yang, “Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends”, Appl. Phys. Lett., 87, pp.112105-1(2005).
39.V. Shortriya, J. Quyang, R. J. Tseng, G. Li and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin film”, Chem. Phys. Lett, 411, pp.138-143(2005).
40.U. Zhokhavets,T. Erb, G. Gobsch, M. Al-Ibrahim, O. Ambacher, “Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells”, Chem. Phys. Lett, 418, pp.347-350(2006).
41.G. Louarn, M. Trznadel, J.P. Buisson, J. Laska, A. Pron, M. Lapkowski, S. Lefrant, “Raman Spectroscopic studies of regioregular poly(3-alkylthiophenes)”, J. Phys. Chem., 100, pp.12532-12539(1996).
42.K. Peter, R. Nilsson,J. Rydberg, L. Baltzer, O. Inganas, “Twisting macromolecular chains: Self-assembly of a chiral supermolecule from nonchiral polythiophene polyanions and random-coil synthetic peptides”, PNAS, 101, pp.11197-11202(2004).
43.A. J. Breeze, Z. Schlesinger, S. A. Carter, P. J. Brock, “Charge transport in TiO2/MEH-PPV polymer photovoltaics” Phys. Rev. B, 64, pp.125205-1-9 (2001).
44.L. J. A. Koster, V. D. Mihailetchi, H. Xie, P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells”, Appl. Phys. Lett., 87, pp.203502-1-3(2005).
45.J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Space”, Adv. Mater., 18, pp.572-576(2006).
46.U. Diebold, “The surface science of titanium dioxide”, Surf. Sci, 48, pp.53-229(2003).
47.I.C. Barlow, H. Jones, W.M. Rainforth, “The effect of heat treatment at 500-655 ℃ on the microstructure and properties of mechanically alloyed Al-Ti-O based material” Mater. Sci. Eng., A351, pp.344-357(2003).
48.Q. Qiau, L. Su, J. Beck, J.T. Mcleskey, “Characteristics of water-soluable polythiophene: TiO2 composite and its application in photovoltaics”, J. Appl. Phys., 98, pp.094906-1-7(2005).