簡易檢索 / 詳目顯示

研究生: 方昱學
Fang, Yu-Syue
論文名稱: 以改質之還原氧化石墨烯提高鈣鈦礦太陽能電池
Enhanced performance of perovskite solar cells by functionalized reduced graphene oxide
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 57
中文關鍵詞: 還原氧化石墨烯3-氨基丙基三乙氧基矽烷鈣鈦礦太陽能電池
外文關鍵詞: rGO, APTS, perovskite solar cells
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鈣鈦礦太陽能電池產業蓬勃發展,在功率轉換效率上有著爆炸性的成長,此現象可歸因於鈣鈦礦材料卓越的特性,例如全色吸收、長電荷擴散長度、高載子遷移率與能隙可調性。其中有機金屬三鹵化物鈣鈦礦被廣泛研究,常採用的電子傳輸層為多孔結構,並使用的金屬氧化物二氧化鈦(TiO2)作為材料,但TiO2具有較大的界面電阻和能階不匹配,以及表面存在許多懸空建導致電荷複合等情況,限制了鈣鈦礦太陽能電池的效率,因此許多研究採用石墨烯摻雜來提升電池表現,但在石墨烯能帶和結構上仍有進一步改善的空間。
    因此本篇論文製作多孔二氧化鈦(mesoporous, mp-TiO2)結構的鈣鈦礦太陽能電池,並進一步透過還原氧化石墨烯(reduced graphene oxide, rGO)薄膜與3-氨基丙基三乙氧基矽烷(3-aminopropyltriethoxysilane, APTS)改質之還原氧化石墨烯來調整其功函數調控,除此之外,APTS具有鈍化TiO2之能力,改善了鈣鈦礦晶體孔洞問題以及實現更為匹配的能階上。本論文透過此方法證實可以降低電荷傳輸與界面電荷累積之複合現象,提高電荷之提取率,顯著增加元件短路電流和開路電壓。以旋塗方法製作APTS-rGO之鈣鈦礦太陽能電池展現最佳的表現,開路電壓Voc為 1.04 V、短路電流密度Jsc為 19.9 mA/cm2、填充因子FF為 70.39%與光電轉換效率PCE為 14.6%,與mp- TiO2鈣鈦礦太陽電池相比高出18%的轉換效率。

    In recent years, the perovskite solar cell industry has been booming with explosive growth in power conversion efficiency. This phenomenon can be attributed to the excellent properties of perovskite materials, such as panchromatic absorption, long charge diffusion length, high carrier mobility and energy gap tunability. However, TiO2 has a large interfacial resistance and energy level mismatch, as well as the existence of many vacancies on the surface that lead to charge recombination, limiting the efficiency of perovskite solar cells. However, there is still room for further improvement in the graphene energy band and structure.
    Therefore, in this paper, we fabricated a mesoporous titanium dioxide (mp-TiO2) structured perovskite solar cell and further adjusted its functional regulation by reducing graphene oxide (rGO) film and 3-aminopropyltriethoxysilane (APTS) modified reduced graphene oxide. In addition, APTS has the ability to passivate TiO2, improve the porosity of perovskite crystals and achieve a better matching of energy levels. It has been demonstrated that the compounding of charge transfer and interfacial charge accumulation can be reduced, the charge extraction rate can be improved, and the short-circuit current and open-circuit voltage of the devices can be significantly increased. The spin-coated APTS-rGO perovskite solar cell shows the best performance with an open-circuit voltage Voc of 1.04 V, short-circuit current density Jsc of 19.9 mA/cm2, fill factor FF of 70.39%, and photovoltaic conversion efficiency PCE of 14.6%, which is 18% higher than that of mp-TiO2 perovskite solar cell.

    中文摘要 I Abstract II 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論 3 2.1 太陽能電池工作原理 3 2.2 CH3NH3PbI3鈣鈦礦 4 2.3 TiO2 電子傳輸層 5 2.4 Spiro-OMeTAD 電洞傳輸層 6 2.5 理想太陽能電池等效電路 6 2.6 太陽能電池性能參數 7 2.6.1短路電流 (Short-circuit Current, I sc) 8 2.6.2 開路電壓 (Open-circuit Voltage, Voc) 8 2.6.3 填充因子 (Fill Factor, FF) 9 2.6.4 功率轉換效率 (Power Conversion Efficiency, PCE) 9 第三章 研究方法 10 3.1製程儀器 10 3.1.1 惰性氣體手套箱 10 3.1.2 旋轉塗佈機(Spin Coater) 10 3.1.3 紫外光臭氧處理機(UV-ozone) 11 3.1.4微量離心機(Mini Centrifuge) 12 3.1.5 熱蒸鍍機(Thermal Evaporator) 13 3.2量測儀器 14 3.2.1 太陽能電池量測系統 14 3.2.2 光電轉換效率 15 3.2.3 拉曼光譜儀(Raman Spectrometer) 16 3.2.4傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 17 3.2.5 紫外光/可見光光譜儀(UV-Visible Spectrometer) 18 3.2.6 X射線光電子能譜儀(X-ray Photoelectron Spectrometer) 19 3.2.7 凱爾文探針(Kelvin Probe, KP) 21 3.2.8 動態光散射儀(Dynamic Light Scattering, DLS) 22 3.2.9 接觸角量測儀(Contact Angle Meter) 23 3.3元件製作流程 25 3.3.1基板製備 25 3.3.2阻擋層製備 26 3.3.3 Mesoporous TiO2多孔層製備 27 3.3.4 APTS-rGO層製備 27 3.3.5 MAPbI3吸收層製備 28 3.3.6 Spiro-OMeTAD傳輸層製備 28 3.3.7 Ag電極製備 28 第四章 實驗結果與討論 29 4.1 前言 29 4.2.1 APTS-rGO自組裝單層(Self-Assembled Monolayer)改質 30 4.2.2 APTS-rGO 原位合成法(In-Situ Synthesis) 31 4.2.3 rGO改質前後分析拉曼光譜 32 4.2.4 APTS-rGO傅立葉轉紅外光譜分析 33 4.2.5 rGO改質前後穿透、反射與吸收特性分析 34 4.2.6 XPS元素分析 36 4.2.7 APTS官能基影響附著度 38 4.2.8 不同離心轉速下的粒徑 39 4.2.9 多孔二氧化鈦混合rGO燒結後的拉曼光譜 40 4.3. 不同製程的鈣鈦礦太陽能電池特性 41 4.3.1 分析摻雜式的鈣鈦礦太陽能電池特性 41 4.3.2 分析旋塗式的鈣鈦礦太陽能電池特性 43 4.3.3 分析元件之吸收光譜 45 4.3.4 薄膜表面之親疏水性分析 46 4.3.5 SEM分析薄膜對鈣鈦礦晶體形貌 46 4.3.6 XRD分析鈣鈦礦晶格 49 4.3.7 電子提取效率分析 50 4.3.8 元件表現穩定度分析 51 第五章 結論與未來展望 54 參考文獻 55

    [1] Best Research-Cell Efficiency Chart. (n.d.). Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html
    [2] Mora-Seró, I. (2018). How do perovskite solar cells work?. Joule, 2(4), 585-587.
    [3] Green, M.A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 8(7), 506-514.
    [4] Garg, R., Dutta, N. K., & Choudhury, N. R. (2014). Work function engineering of graphene. Nanomaterials, 4(2), 267-300.
    [5] Sławek, A., Starowicz, Z., & Lipiński, M. (2021). The Influence of the Thickness of Compact TiO2 Electron Transport Layer on the Performance of Planar CH3NH3PbI3 Perovskite Solar Cells. Materials, 14(12), 3295.
    [6] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7.
    [7] Abd El-Basit, W., Abd El-Maksood, A. M., & Soliman, F. A. E. S. (2013). Mathematical model for photovoltaic cells. Leonardo Journal of Sciences, 23, 13-28.
    [8] Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. In MATEC Web of Conferences (Vol. 126, p. 03002). EDP Sciences.
    [9] IV Curve | PVEducation. (n.d.). Solar Cell Parameters. https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve
    [10] Edinburgh Instruments Ltd. (2021, November 25). What is Raman Spectroscopy? | Raman Spectroscopy Principle. Edinburgh Instruments. https://www.edinst.com/blog/what-is-raman-spectroscopy/
    [11] 傅立葉轉換紅外線光譜(FTIR)分析原理. (2022, June 23). RIGHTEK. https://www.rightek.com.tw/product_detail.php?id=167
    [12] Cannon, M. (2022, April 5). UV-Visible Spectroscopy. JASCO Inc. https://jascoinc.com/learning-center/theory/spectroscopy/uv-vis-spectroscopy/
    [13] Cushman, C. V., Chatterjee, S., Major, G. H., Smith, N. J., Roberts, A., & Linford, M. R. (2017). Trends in Advanced XPS Instrumentation. Near-Ambient Pressure XPS in Vac. Technol Coatings August.
    [14] JKweb, Webdesign Basel & Zürich. (n.d.).LS Instruments | Introduction. Dynamic Light Scattering (DLS). https://lsinstruments.ch/en/theory/dynamic-light-scattering-dls/introduction
    [15] Contact Angle: A Guide to Theory and Measurement. (n.d.). Ossila. https://www.ossila.com/pages/contact-angle-theory-measurement
    [16] Kang, B., Lim, S., Lee, W. H., Jo, S. B., & Cho, K. (2013). Work‐Function‐Tuned Reduced Graphene Oxide via Direct Surface Functionalization as Source/Drain Electrodes in Bottom‐Contact Organic Transistors. Advanced Materials, 25(41), 5856-5862.
    [17] Martín-García, B., Polovitsyn, A., Prato, M., & Moreels, I. (2015). Efficient charge transfer in solution-processed PbS quantum dot–reduced graphene oxide hybrid materials. Journal of Materials Chemistry C, 3(27), 7088-7095.
    [18] Kim, S. G., Park, O. K., Lee, J. H., & Ku, B. C. (2013). Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250.
    [19] Fan, B., Guo, H., Shi, J., Shi, C., Jia, Y., Wang, H., ... & Zhang, R. (2016). Facile one-pot preparation of silver/reduced graphene oxide nanocomposite for cancer photodynamic and photothermal therapy. Journal of Nanoscience and Nanotechnology, 16(7), 7049-7054.
    [20] Nezamdoust, S., & Seifzadeh, D. (2017). rGO@ APTES/hybrid sol-gel nanocomposite for corrosion protection of 2024 aluminum alloy. Progress in Organic Coatings, 109, 97-109.
    [21] Hafeez, H., Choi, D. K., Lee, C. M., Jesuraj, P. J., Kim, D. H., Song, A., ... & Ryu, S. Y. (2019). Replacement of n-type layers with a non-toxic APTES interfacial layer to improve the performance of amorphous Si thin-film solar cells. RSC advances, 9(13), 7536-7542
    [22] Nam, S., Lee, S. M., Kim, J., Oh, I. H., & Chang, S. T. (2021). (3-Aminopropyl) Triethoxysilane-Modified Silver Nanowire Network with Strong Adhesion to Coating Substrates for Highly Transparent Electrodes. Coatings, 11(5), 499.
    [23] Liu, P., Yang, B. C., Liu, G., Wu, R. S., Zhang, C. J., Wan, F., ... & Zhou, C. H. (2017). Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles. Chinese Physics B, 26(5), 058401.
    [24] Shallcross, R. C., Olthof, S., Meerholz, K., & Armstrong, N. R. (2019). Impact of titanium dioxide surface defects on the interfacial composition and energetics of evaporated perovskite active layers. ACS applied materials & interfaces, 11(35), 32500-32508.
    [25] Abate, S. Y., Huang, D. C., & Tao, Y. T. (2020). Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group. Organic Electronics, 78, 105583.
    [26] Kim, D. I., Lee, J. W., Jeong, R. H., & Boo, J. H. (2022). A high‐efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Scientific Reports, 12(1), 1-10.

    無法下載圖示 校內:2027-08-16公開
    校外:2027-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE