| 研究生: |
方昱學 Fang, Yu-Syue |
|---|---|
| 論文名稱: |
以改質之還原氧化石墨烯提高鈣鈦礦太陽能電池 Enhanced performance of perovskite solar cells by functionalized reduced graphene oxide |
| 指導教授: |
涂維珍
Tu, Wei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 還原氧化石墨烯 、3-氨基丙基三乙氧基矽烷 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | rGO, APTS, perovskite solar cells |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來鈣鈦礦太陽能電池產業蓬勃發展,在功率轉換效率上有著爆炸性的成長,此現象可歸因於鈣鈦礦材料卓越的特性,例如全色吸收、長電荷擴散長度、高載子遷移率與能隙可調性。其中有機金屬三鹵化物鈣鈦礦被廣泛研究,常採用的電子傳輸層為多孔結構,並使用的金屬氧化物二氧化鈦(TiO2)作為材料,但TiO2具有較大的界面電阻和能階不匹配,以及表面存在許多懸空建導致電荷複合等情況,限制了鈣鈦礦太陽能電池的效率,因此許多研究採用石墨烯摻雜來提升電池表現,但在石墨烯能帶和結構上仍有進一步改善的空間。
因此本篇論文製作多孔二氧化鈦(mesoporous, mp-TiO2)結構的鈣鈦礦太陽能電池,並進一步透過還原氧化石墨烯(reduced graphene oxide, rGO)薄膜與3-氨基丙基三乙氧基矽烷(3-aminopropyltriethoxysilane, APTS)改質之還原氧化石墨烯來調整其功函數調控,除此之外,APTS具有鈍化TiO2之能力,改善了鈣鈦礦晶體孔洞問題以及實現更為匹配的能階上。本論文透過此方法證實可以降低電荷傳輸與界面電荷累積之複合現象,提高電荷之提取率,顯著增加元件短路電流和開路電壓。以旋塗方法製作APTS-rGO之鈣鈦礦太陽能電池展現最佳的表現,開路電壓Voc為 1.04 V、短路電流密度Jsc為 19.9 mA/cm2、填充因子FF為 70.39%與光電轉換效率PCE為 14.6%,與mp- TiO2鈣鈦礦太陽電池相比高出18%的轉換效率。
In recent years, the perovskite solar cell industry has been booming with explosive growth in power conversion efficiency. This phenomenon can be attributed to the excellent properties of perovskite materials, such as panchromatic absorption, long charge diffusion length, high carrier mobility and energy gap tunability. However, TiO2 has a large interfacial resistance and energy level mismatch, as well as the existence of many vacancies on the surface that lead to charge recombination, limiting the efficiency of perovskite solar cells. However, there is still room for further improvement in the graphene energy band and structure.
Therefore, in this paper, we fabricated a mesoporous titanium dioxide (mp-TiO2) structured perovskite solar cell and further adjusted its functional regulation by reducing graphene oxide (rGO) film and 3-aminopropyltriethoxysilane (APTS) modified reduced graphene oxide. In addition, APTS has the ability to passivate TiO2, improve the porosity of perovskite crystals and achieve a better matching of energy levels. It has been demonstrated that the compounding of charge transfer and interfacial charge accumulation can be reduced, the charge extraction rate can be improved, and the short-circuit current and open-circuit voltage of the devices can be significantly increased. The spin-coated APTS-rGO perovskite solar cell shows the best performance with an open-circuit voltage Voc of 1.04 V, short-circuit current density Jsc of 19.9 mA/cm2, fill factor FF of 70.39%, and photovoltaic conversion efficiency PCE of 14.6%, which is 18% higher than that of mp-TiO2 perovskite solar cell.
[1] Best Research-Cell Efficiency Chart. (n.d.). Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html
[2] Mora-Seró, I. (2018). How do perovskite solar cells work?. Joule, 2(4), 585-587.
[3] Green, M.A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 8(7), 506-514.
[4] Garg, R., Dutta, N. K., & Choudhury, N. R. (2014). Work function engineering of graphene. Nanomaterials, 4(2), 267-300.
[5] Sławek, A., Starowicz, Z., & Lipiński, M. (2021). The Influence of the Thickness of Compact TiO2 Electron Transport Layer on the Performance of Planar CH3NH3PbI3 Perovskite Solar Cells. Materials, 14(12), 3295.
[6] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7.
[7] Abd El-Basit, W., Abd El-Maksood, A. M., & Soliman, F. A. E. S. (2013). Mathematical model for photovoltaic cells. Leonardo Journal of Sciences, 23, 13-28.
[8] Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. In MATEC Web of Conferences (Vol. 126, p. 03002). EDP Sciences.
[9] IV Curve | PVEducation. (n.d.). Solar Cell Parameters. https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve
[10] Edinburgh Instruments Ltd. (2021, November 25). What is Raman Spectroscopy? | Raman Spectroscopy Principle. Edinburgh Instruments. https://www.edinst.com/blog/what-is-raman-spectroscopy/
[11] 傅立葉轉換紅外線光譜(FTIR)分析原理. (2022, June 23). RIGHTEK. https://www.rightek.com.tw/product_detail.php?id=167
[12] Cannon, M. (2022, April 5). UV-Visible Spectroscopy. JASCO Inc. https://jascoinc.com/learning-center/theory/spectroscopy/uv-vis-spectroscopy/
[13] Cushman, C. V., Chatterjee, S., Major, G. H., Smith, N. J., Roberts, A., & Linford, M. R. (2017). Trends in Advanced XPS Instrumentation. Near-Ambient Pressure XPS in Vac. Technol Coatings August.
[14] JKweb, Webdesign Basel & Zürich. (n.d.).LS Instruments | Introduction. Dynamic Light Scattering (DLS). https://lsinstruments.ch/en/theory/dynamic-light-scattering-dls/introduction
[15] Contact Angle: A Guide to Theory and Measurement. (n.d.). Ossila. https://www.ossila.com/pages/contact-angle-theory-measurement
[16] Kang, B., Lim, S., Lee, W. H., Jo, S. B., & Cho, K. (2013). Work‐Function‐Tuned Reduced Graphene Oxide via Direct Surface Functionalization as Source/Drain Electrodes in Bottom‐Contact Organic Transistors. Advanced Materials, 25(41), 5856-5862.
[17] Martín-García, B., Polovitsyn, A., Prato, M., & Moreels, I. (2015). Efficient charge transfer in solution-processed PbS quantum dot–reduced graphene oxide hybrid materials. Journal of Materials Chemistry C, 3(27), 7088-7095.
[18] Kim, S. G., Park, O. K., Lee, J. H., & Ku, B. C. (2013). Layer-by-layer assembled graphene oxide films and barrier properties of thermally reduced graphene oxide membranes. Carbon letters, 14(4), 247-250.
[19] Fan, B., Guo, H., Shi, J., Shi, C., Jia, Y., Wang, H., ... & Zhang, R. (2016). Facile one-pot preparation of silver/reduced graphene oxide nanocomposite for cancer photodynamic and photothermal therapy. Journal of Nanoscience and Nanotechnology, 16(7), 7049-7054.
[20] Nezamdoust, S., & Seifzadeh, D. (2017). rGO@ APTES/hybrid sol-gel nanocomposite for corrosion protection of 2024 aluminum alloy. Progress in Organic Coatings, 109, 97-109.
[21] Hafeez, H., Choi, D. K., Lee, C. M., Jesuraj, P. J., Kim, D. H., Song, A., ... & Ryu, S. Y. (2019). Replacement of n-type layers with a non-toxic APTES interfacial layer to improve the performance of amorphous Si thin-film solar cells. RSC advances, 9(13), 7536-7542
[22] Nam, S., Lee, S. M., Kim, J., Oh, I. H., & Chang, S. T. (2021). (3-Aminopropyl) Triethoxysilane-Modified Silver Nanowire Network with Strong Adhesion to Coating Substrates for Highly Transparent Electrodes. Coatings, 11(5), 499.
[23] Liu, P., Yang, B. C., Liu, G., Wu, R. S., Zhang, C. J., Wan, F., ... & Zhou, C. H. (2017). Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles. Chinese Physics B, 26(5), 058401.
[24] Shallcross, R. C., Olthof, S., Meerholz, K., & Armstrong, N. R. (2019). Impact of titanium dioxide surface defects on the interfacial composition and energetics of evaporated perovskite active layers. ACS applied materials & interfaces, 11(35), 32500-32508.
[25] Abate, S. Y., Huang, D. C., & Tao, Y. T. (2020). Surface modification of TiO2 layer with phosphonic acid monolayer in perovskite solar cells: Effect of chain length and terminal functional group. Organic Electronics, 78, 105583.
[26] Kim, D. I., Lee, J. W., Jeong, R. H., & Boo, J. H. (2022). A high‐efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Scientific Reports, 12(1), 1-10.
校內:2027-08-16公開