簡易檢索 / 詳目顯示

研究生: 林勝然
Lin, Sheng-Ran
論文名稱: 使用水流裝置收集電紡絲同排聚丙烯纖維及其自增強複合材料之性質鑑定
Collection of isotactic polypropylene nanofibers via circulating flowed-water collector and the self-reinforced material properties characterization
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 電紡絲同排聚丙烯流水收集裝置複合材料
外文關鍵詞: electrospinning, isotactic polypropylene, flow-water collector, composite material
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用鄰二氯苯作為溶劑配置出8 wt%的同排聚丙烯溶液,並在其中添加0.5 wt%的四正丁基過氯酸銨以提高導電度。之後在高溫環境下進行電紡絲。電紡絲使用的收集裝置有三種:鋁製平行收集板、乾玻片收集以及循環流水收集裝置。循環流水裝置的研發旨在收集到排列分散的電紡絲纖維,並透過掃描式電子顯微鏡影像以及光學元件(攝影機)可以確認該流水收集裝置能達到此一效果。

    為確認水流對電紡絲纖維是否有性質上的影響,在後續實驗進行了示差掃描卡計的分析。並且在偏光顯微鏡下與iPP基材共同熔化、降溫結晶,觀察結晶的形態,得知該電紡絲纖維可以誘導同排聚丙烯基材成長出穿晶層,並透過穿透光強度分析尋找出成核溫度。

    將流水裝置收集到較分散的同排聚丙烯纖維進行超音波震盪,並且加入同排聚丙烯塑膠粒混合製備成為複合材料,並利用示差掃描卡計檢測其熱性質。

    In this study, we used othor-dichlorobenzene as a solvent to prepare 8 wt% isotactic polypropylene solution. To enhance the conductivity of the solution, 0.5 wt% tetra-n-butylammonium perchlorate was also added. Subsequently, electrospinning was performed in a high-temperature environment to prevent solution from gel. Then three types of collectors were utilized to collect as-spun fiber: aluminum plates, dry glass slide, and a circulating flowed-water system, and we utilized scanning electron microscopy (SEM), camera and CCD images to confirm the electrospinning process worked.

    To investigate the thermal properties of the fibers collected from different collector, we used differential scanning calorimetry (DSC) in the subsequent experiments. Moreover, polarized microscopy (POM) and hot stage can help us to observe the crystallization process by melting and cooling the sample that few fibers were buried in iPP matrix. It was found that the fibers have the ability wo induce growth of a transcrystalline layer in the iPP matrix, and induction temperature were determined through analysis of transmitted light intensity.

    The water-collected isotactic polypropylene fibers were subjected to ultrasonic vibration and mixed with isotactic polypropylene plastic pellets to prepare a composite material. The thermal properties of the composite material were examined by differential scanning calorimetry (DSC).

    摘要 i Extended Abstract ii 誌謝 xi 目錄 xii 表目錄 xv 圖目錄 xvi 符號表 xix 一、前言 1 二、簡介 2 2.1 電紡絲技術 2 2.2 以水為電紡絲收集裝置 3 2.3 複合材料 4 三、文獻回顧 5 3.1聚丙烯(polypropylene , PP)簡介 5 3.1.1 PP的介紹 5 3.1.2同排聚丙烯(isotactic polypropylene,iPP)之簡介 5 3.2 結晶性高分子之纖維 6 3.3 電紡絲纖維複材製備與研究 8 3.4 以水為電紡絲收集裝置 10 四、實驗 21 4.1實驗藥品 21 4.2電紡絲器材 22 4.3分析儀器 23 4.4實驗步驟 23 4.4.1 配製電紡絲iPP/o-DCB/0.5 wt%Bu4NClO4之溶液 23 4.4.2電紡絲實驗 24 4.4.2.1 使用收集板收集電紡絲8 wt% iPP/o-DCB溶液之纖維 24 4.4.2.2 使用循環水流裝置收集8 wt% iPP/o-DCB溶液的電紡絲纖維 25 4.4.3示差掃描卡計 (DSC) 25 4.4.4 超音波震盪iPP纖維 26 4.4.5 iPP複材的製作與分析 27 4.4.6 POM 觀察結晶過程 27 4.4.7 實驗流程圖 29 五、結果與討論 33 5.1 電紡絲溶液性質 33 5.2 電紡絲實驗 33 5.2.1 電紡絲iPP/o-DCB溶液 33 5.2.2 流水收集裝置 35 5.2.3電紡絲纖維 36 5.3 纖維性質分析 38 5.3.1 DSC分析 38 5.3.2 纖維穿晶實驗 39 5.4 iPP纖維複合材料 42 5.4.1超音波震盪纖維 42 5.4.2複材製作 44 5.4.3複材性質分析 44 六、結論 69 七、參考文獻 71 八、附錄 74

    [1] C. Wang, T. Hashimoto, Y. Wang, H.-Y. Lai, and C.-H. Kuo, “Formation of dissipative structures in the straight segment of electrospinning jets,” Macromolecules, vol. 53, no. 18, pp. 7876–7886, 2020.

    [2] S. Li and B.-K. Lee, “Electrospinning of circumferentially aligned polymer nanofibers floating on rotating water collector,” J. Appl. Polym. Sci., vol. 137, no. 22, p. 48759, Jun. 2020.

    [3] C. Wang, Y.-L. Chu, and Y.-J. Wu, “Electrospun isotactic polystyrene nanofibers as a novel β-nucleating agent for isotactic polypropylene,” Polymer, vol. 53, no. 23, Art. no. 23, 2012.

    [4] C. Wang, T.-C. Hsieh, and Y.-W. Cheng, “Solution-electrospun isotactic polypropylene fibers: processing and microstructure development during stepwise annealing,” Macromolecules, vol. 43, no. 21, pp. 9022–9029, 2010.

    [5] S. Brückner, S. V. Meille, V. Petraccone, and B. Pirozzi, “Polymorphism in isotactic polypropylene,” Progress in Polymer Science, vol. 16, no. 2–3, pp. 361–404, 1991.

    [6] B. Lotz, J. C. Wittmann, and A. J. Lovinger, “Structure and morphology of poly (propylenes): a molecular analysis,” Polymer, vol. 37, no. 22, pp. 4979–4992, 1996.

    [7] L. Larrondo and R. Manley, “Electrostatic Fiber Spinning from Polymer Melts .1. Experimental-Observations on Fiber Formation and Properties,” J. Polym. Sci. Pt. B-Polym. Phys., vol. 19, no. 6, pp. 909–920, 1981.

    [8] J. Lyons, C. Li, and F. Ko, “Melt-electrospinning part I: processing parameters and geometric properties,” Polymer, vol. 45, no. 22, pp. 7597–7603, Oct. 2004.

    [9] D. Cho, H. Zhou, Y. Cho, D. Audus, and Y. L. Joo, “Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt,” Polymer, vol. 51, no. 25, pp. 6005–6012, Nov. 2010.

    [10] S. Liu et al., “Electrospun isotactic polypropylene fibers: self-similar morphology and microstructure,” Polymer, vol. 54, no. 12, pp. 3117–3123, 2013.

    [11] C. Wang, Y.-L. Chu, and Y.-J. Wu, “Electrospun isotactic polystyrene nanofibers as a novel β-nucleating agent for isotactic polypropylene,” Polymer, vol. 53, no. 23, pp. 5404–5412, 2012.

    [12] C. Wang, Y.-J. Wu, C.-Y. Fang, and C.-W. Tsai, “Electrospun nanofiber-reinforced polypropylene composites: nucleating ability of nanofibers,” Composites Science and Technology, vol. 126, pp. 1–8, 2016.

    [13] H. Ishida and P. Bussi, “Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites,” Macromolecules, vol. 24, no. 12, pp. 3569–3577, 1991.

    [14] J. Loos, T. Schimanski, J. Hofman, T. Peijs, and P. J. Lemstra, “Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites,” Polymer, vol. 42, no. 8, pp. 3827–3834, 2001.

    [15] F. Zhang, X. Liu, G. Zheng, Z. Guo, C. Liu, and C. Shen, “Facile Route to Improve the Crystalline Memory Effect: Electrospun Composite Fiber and Annealing,” Macromol. Chem. Phys., vol. 219, no. 17, p. 1800236, Sep. 2018.

    [16] S. Li and B.-K. Lee, “Electrospinning of circumferentially aligned polymer nanofibers floating on rotating water collector,” Journal of Applied Polymer Science, vol. 137, no. 22, p. 48759, 2020.

    [17] S. Li and B.-K. Lee, “Hydrodynamic and electrical interactions in electrospinning of polymer fibers over a liquid collector,” Journal of Applied Polymer Science, vol. 138, no. 43, p. 51271, 2021.

    [18] M. G. McKee, G. L. Wilkes, Ralph. H. Colby, and T. E. Long, “Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters,” Macromolecules, vol. 37, no. 5, pp. 1760–1767, Mar. 2004.

    [19] S. Koombhongse, W. Liu, and D. H. Reneker, “Flat polymer ribbons and other shapes by electrospinning,” Journal of Polymer Science Part B: Polymer Physics, vol. 39, no. 21, pp. 2598–2606, 2001.

    [20] B. Na, M. Guo, J. H. Yang, H. Tan, Q. Zhang, and Q. Fu, “Crystal morphology and transcrystallization mechanism of isotactic polypropylene induced by fibres: interface nucleation versus bulk nucleation,” Polym. Int., vol. 55, no. 4, pp. 441–448, Apr. 2006.

    [21] 謝采娟, “高溫電紡同排聚丙烯奈米纖維及其微結構鑑定”, 成功大學, 2010.

    [22] 賴心儀, “電紡聚乙烯醇纖維製備聚丙烯複材及其結晶性質研究”, 成功大學, 2016

    無法下載圖示 校內:2028-06-30公開
    校外:2028-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE