簡易檢索 / 詳目顯示

研究生: 王唯丞
Wang, Wei-Cheng
論文名稱: 百瓦級自製氬氣霍爾推進器之研製
Development of hundred-watt-class indigenous Hall effect thruster
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 133
中文關鍵詞: 電力推進霍爾推進器中空陰極法拉第探針旋轉平台
外文關鍵詞: Electric propulsion, Hall thruster, Hollow cathode, Faraday probe, Vacuum Rotating system
ORCID: https://orcid.org/0009-0009-6696-4666
ResearchGate: https://www.researchgate.net/profile/Wei-Cheng-Wang-6?ev=hdr_xprf
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技持續進步,太空產業展現出高度的戰略價值與商業潛力。其中,衛星任務的成敗關鍵之一即在於推進系統的可靠性與效能。推進系統不僅可用於軌道轉移與姿態控制,支援通訊、遙測與觀測等任務,亦能於任務結束後執行離軌操作,以降低太空垃圾對軌道環境之衝擊。現行太空推進技術主要分為化學推進與電力推進兩大類。前者具備高推力,適用於火箭發射與快速變軌;後者則以高效率與高比衝為優勢,特別適合長時間運作且阻力極小之太空環境,已逐漸成為新一代衛星推進系統的主流選項。霍爾推進器作為靜電式電力推進技術的一種,具有良好的推力功率比與操作穩定性,結構簡單、壽命長,現已廣泛應用於低軌衛星任務。然而,目前台灣在電力推進系統的研發尚屬初期階段,缺乏完整自主開發經驗。為提升技術自主性、降低成本並強化本土太空產業鏈,有必要發展具在地化製造能力之電力推進系統。
    本研究針對百瓦級霍爾推進器進行設計與實驗驗證,目標為建立適用於小型衛星之低功率電力推進技術。推進器採用永久磁鐵取代傳統電磁線圈以降低功耗與熱負載,並選用價格低廉、來源穩定的氬氣作為推進劑,其每公斤成本僅為氙氣的1%以內。設計上參考商用SPT-100推進器參數,並根據理想縮放理論進行ZAP-25推進器幾何與磁路設計,搭配磁場模擬優化結構配置與陽極設計。
    實驗方面,推進器配合自製無加熱中空陰極完成點火,並利用旋轉平台搭配法拉第探針進行羽流掃描,以量測總離子電流並推算推力性能。性能測試涵蓋不同質量流率(20–30 sccm)、輸入功率(85–115 W)與磁場強度(210 G 與 320 G),以探討操作參數對性能之影響。實驗結果顯示,在114.5 W、30 sccm、低磁場條件下可獲得最大推力1.87 mN;而於112.5 W、20 sccm、低磁場條件下則達到最高比衝226 s。值得注意的是,相較於氙氣,氬氣推進劑於磁場強度變化下展現不同趨勢,當磁場增加至320 G時反而導致性能下降,推測可能因異常電子擴散效應加劇,而氬氣較適合於經典電子擴散主導區域內運作。
    目前氬氣於低功率霍爾推進器之應用相關實驗參數仍相對有限,期盼本研究能對永久磁鐵應用於電力推進系統,以及氬氣霍爾推進器相關領域提供初步參考與實驗依據。實驗結果顯示,透過永久磁鐵結合氬氣推進劑之配置,確實可實現穩定放電,並展現低成本與小型化等潛在優勢。

    Space propulsion systems are vital for satellite missions, including orbit maintenance, maneuvering, and deorbiting. Chemical propulsion delivers high thrust, while electric propulsion offers better efficiency and specific impulse, making it ideal for long-duration missions. Hall thrusters, known for their good thrust-to-power ratio and simple structure, are widely used in low Earth orbit. In Taiwan, electric propulsion development is still emerging. This study designs and tests a 100-watt-class Hall thruster for small satellites, using permanent magnets to reduce power and heat, and argon as a low-cost, abundant propellant. The design is based on the SPT-100 model and optimized using magnetic field simulations.
    Experiments used argon heaterless hollow cathode and a rotating system with Faraday probe for plume diagnostics. Tests covered flow rates of 20–30 sccm, power levels of 85–115 W, and magnetic fields of 210 G and 320 G. The thruster reached a maximum thrust of 1.87 mN and a peak specific impulse of 226 s at lower magnetic field strength. Performance dropped with stronger magnetic fields, likely due to increased anomalous electron diffusion.
    This study confirms the feasibility of using argon and permanent magnets for low-cost electric propulsion in small satellites.

    中文摘要 I ABSTRACT III LIST OF TABLES VII LIST OF FIGURES VIII NOMENCLATURE X Chapter 1. INTRODUCTION 1 1.1 Preface 1 1.2 Space propulsion system 2 1.2.1 Different types of electric propulsion 3 1.2.2 Electric propulsion performance metrics 7 1.3 Features and principles of Hall thrusters 8 1.3.1 Configuration & operating principles of Hall thrusters 8 1.3.2 Advantages & Disadvantages of Hall thrusters 10 1.4 Motivation & Objective 13 1.4.1 Motivation 13 1.4.2 Objective 14 Chapter 2. LITERATURE REVIEW 15 2.1 Hall thruster physics 15 2.1.1 Ionization & Acceleration process 15 2.1.2 Voltage & Current distribution 19 2.1.3 Hall thruster propellant selection 21 2.2 Hall thruster design methodology 25 2.2.1 Ideal Scaling Principles 26 2.2.2 Propellant Ionization & Scaling of the Ionization Layer 28 2.2.3 Electron Confinement & Magnetic Field Optimization 29 2.2.4 Power Losses and Geometric Considerations 32 2.2.5 Summary of scaling law 33 2.3 Electron source for Hall thruster 34 2.3.1 Traditional Hollow cathode 34 2.3.2 Heaterless hollow cathode 36 2.4 Faraday probe 38 2.4.1 Basic principle of Faraday probe 39 2.4.2 Faraday probe measurement at Hall thruster plume 41 Chapter 3. DESIGN of ZAP-25 HALL THRUSTER 44 3.1 Thrust power & Parameter decision 44 3.1.1 Nominal power decision 44 3.1.2 Critical parameters decision 45 3.2 Magnetic circuit design 47 3.2.1 Magnetic circuit components 47 3.2.2 Magnetic field intensity tuning & Magnet Mounting 51 3.3 Anode & Propellant Distribution Design 56 3.3.1 Anode injection pressure estimation & Flow connection 57 3.3.2 Electrical insulation & Power connection 60 3.4 Final design 64 Chapter 4. EXPERIMENTAL SETUP 68 4.1 Instrumentation 68 4.1.1 Vacuum chamber 70 4.1.2 Propellant feeding system 71 4.1.3 Power supplies 73 4.1.4 Measurement devices 74 4.2 Heaterless hollow cathode 76 4.3 Plume scanning system 78 4.3.1 Rotating system 78 4.3.2 Faraday probe 80 Chapter 5. RESULTS & DISCUSSION 84 5.1 Experimental results & analysis 84 5.1.1 Performance analysis in different flow rate 85 5.1.2 Performance analysis in different power levels 92 5.1.3 Performance analysis in different magnetic intensity 95 5.2 Comparative study of thrust performance 100 Chapter 6. CONCLUSION 104 Chapter 7. FUTURE WORK 106 REFERENCE 109 APPENDIX 114 A. Matlab code for performance calculation 114 B. ZAP-25 Hall thruster ignition procedure 117

    [1] A. Yalamarthy, Optimization of the Thrust Produced by a Plasma Flow in a Magnetic Nozzle. 2015.
    [2] D. Lev et al., The Technological and Commercial Expansion of Electric Propulsion in the Past 24 Years. 2017.
    [3] S. Mazouffre, "Electric propulsion for satellites and spacecraft: established technologies and novel approaches," (in English), Plasma Sources Science and Technology, vol. 25, no. 3, p. 033002, 2016-06-01 2016, doi: 10.1088/0963-0252/25/3/033002.
    [4] D. Milligan and S. Gabriel, "Generation of experimental plasma parameter maps around the baffle aperture of a Kaufman (UK-25) ion thruster," Acta Astronautica, vol. 64, pp. 952-968, 05/01 2009, doi: 10.1016/j.actaastro.2008.12.009.
    [5] C. Charles, R. W. Boswell, and K. Takahashi, "Investigation of radiofrequency plasma sources for space travel," Plasma Physics and Controlled Fusion, vol. 54, no. 12, p. 124021, 2012/11/21 2012, doi: 10.1088/0741-3335/54/12/124021.
    [6] S. Satori, K. Nishiyama, H. K. Hitoshi Kuninaka, and K. K. Kyoichi Kuriki, "Electron Cyclotron Resonance Ion Source for Ion Thruster," Japanese Journal of Applied Physics, vol. 35, no. 1R, p. 274, 1996/01/01 1996, doi: 10.1143/JJAP.35.274.
    [7] M. Sangregorio, K. Xie, N. Wang, N. Guo, and Z. Zhang, "Ion engine grids: Function, main parameters, issues, configurations, geometries, materials and fabrication methods," Chinese Journal of Aeronautics, vol. 31, no. 8, pp. 1635-1649, 2018/08/01/ 2018, doi: https://doi.org/10.1016/j.cja.2018.06.005.
    [8] D. M. Goebel and I. Katz, "Fundamentals of Electric Propulsion: Ion and Hall Thrusters," 2008.
    [9] M. Jakubczak, J. Kurzyna, and A. Riazantsev, "Experimental Verification of the Magnetic Field Topography inside a small Hall Thruster," Measurement Science Review, vol. 21, pp. 150-157, 10/01 2021, doi: 10.2478/msr-2021-0021.
    [10] J.-P. Boeuf, "Tutorial: Physics and modeling of Hall thrusters," Journal of Applied Physics, vol. 121, 2017.
    [11] N. Cornu, F. Marchandise, F. Darnon, and D. Estublier, PPS®1350 Qualification Demonstration: 10500 hrs on the Ground and 5000 hrs in Flight. 2007.
    [12] K. De Grys, A. Mathers, B. Welander, and V. Khayms, "Demonstration of 10,400 hours of operation on 4.5 kw qualification model hall thruster," in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010, p. 6698.
    [13] C. E. Garner, "Performance evaluation and life testing of the SPT-100," in Proceedings of the 23rd International Electric Propulsion Conference, Seattle, Washington, 1993, pp. 823-839.
    [14] D. Lev, R. M. Myers, K. M. Lemmer, J. Kolbeck, H. Koizumi, and K. Polzin, "The technological and commercial expansion of electric propulsion," Acta Astronautica, vol. 159, pp. 213-227, 2019.
    [15] J. R. Brophy et al., "Ion propulsion system (NSTAR) DS1 technology validation report," JPL Publication 00-10, October, 2000.
    [16] I. G. Mikellides, I. Katz, R. R. Hofer, and D. M. Goebel, "Magnetic shielding of a laboratory Hall thruster. I. Theory and validation," Journal of Applied Physics, vol. 115, no. 4, 2014.
    [17] R. R. Hofer, D. M. Goebel, I. G. Mikellides, and I. Katz, "Magnetic shielding of a laboratory Hall thruster. II. Experiments," Journal of Applied Physics, vol. 115, no. 4, 2014.
    [18] V.-G. Tirila, A. Demairé, and C. N. Ryan, "Review of alternative propellants in Hall thrusters," Acta Astronautica, vol. 212, pp. 284-306, 2023.
    [19] E.-N. Glueckauf and G. Kitt, "The krypton and xenon contents of atmospheric air," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 234, no. 1199, pp. 557-565, 1956.
    [20] A. Neice and M. Zornow, "Xenon anaesthesia for all, or only a select few?," vol. 71, ed: Wiley Online Library, 2016, pp. 1267-1272.
    [21] F. B. Insights, "Xenon Market Size, Share & COVID-19 Impact Analysis, By Type (N3, N4. 5, and N5), By Application (Imaging & Lighting, Satellite, Electronics & Semiconductors, Medical and Others), and Regional Forcast, 2022-2029," ed, 2023.
    [22] S. C. Hwang, R. D. Lein, and D. A. Morgan, "Noble gases," Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
    [23] C. N. R. Thomas F. Munro-O’Brien, "Performance of a low power Hall effect thruster with several gaseous propellants," Acta Astronautica, vol. 206, 2023.
    [24] J. L. Ross, "Probe studies of a Hall thruster at low voltages," 2011.
    [25] N. Turan, U. Kokal, and M. Celik, "Experimental investigation of the effects of cathode current on HK40 Hall thruster operation," in 5th Space Propulsion Conference, 2016.
    [26] R. W. Conversano, D. M. Goebel, R. R. Hofer, I. G. Mikellides, and R. E. Wirz, "Performance analysis of a low-power magnetically shielded Hall thruster: experiments," Journal of Propulsion and Power, vol. 33, no. 4, pp. 975-983, 2017.
    [27] J. Szabo et al., "Performance evaluation of an iodine-vapor Hall thruster," Journal of Propulsion and Power, vol. 28, no. 4, pp. 848-857, 2012.
    [28] J. M. Makela, R. L. Washeleski, D. R. Massey, L. B. King, and M. A. Hopkins, "Development of a magnesium and zinc Hall-effect thruster," Journal of Propulsion and Power, vol. 26, no. 5, pp. 1029-1035, 2010.
    [29] T. Schönherr, K. Komurasaki, F. Romano, B. Massuti-Ballester, and G. Herdrich, "Analysis of atmosphere-breathing electric propulsion," IEEE Transactions on Plasma Science, vol. 43, no. 1, pp. 287-294, 2014.
    [30] R. Moloney, "Performance and Behaviour of Unconventional Molecular Propellants in a Cylindrical Hall Thruster," in Space Propulsion Conference, 2020.
    [31] W. Zachary, "Theoretical and experimental investigation of Hall thruster miniaturization," 09/02 2008.
    [32] F. Chan-Ying, "Design And Testing Of A Micro Hall Effect Thruster Prototype For Nanosatellites," 2024.
    [33] V. K. Rawlin and E. V. Pawlik, "A Mercury plasma-bridge neutralizer," Journal of Spacecraft and Rockets, vol. 5, no. 7, pp. 814-820, 1968.
    [34] J. H. Hsieh, M. M. Shen, Y.-H. Li, and P.-H. Huang, "Development of a lanthanum hexaboride hollow cathode for a magnetic octupole thruster," Vacuum, vol. 214, p. 112146, 2023.
    [35] O. Korkmaz, A. Ozturk, and M. Celik, Design Process of the Hollow Cathode Manufactured for Use in Electric Propulsion Systems as Electron Source. 2014.
    [36] D. M. Goebel, R. M. Watkins, and K. K. Jameson, "LaB6 hollow cathodes for ion and Hall thrusters," Journal of Propulsion and Power, vol. 23, no. 3, pp. 552-558, 2007.
    [37] U. Kokal, N. Turan, M. Celik, and H. Kurt, "Thermal analysis and testing of different designs of lanthanum hexaboride hollow cathodes," in 2017 8th International Conference on Recent Advances in Space Technologies (RAST), 2017: IEEE, pp. 47-53.
    [38] D. R. Lev, I. G. Mikellides, D. Pedrini, D. M. Goebel, B. A. Jorns, and M. S. McDonald, "Recent progress in research and development of hollow cathodes for electric propulsion," Reviews of Modern Plasma Physics, vol. 3, no. 1, p. 6, 2019.
    [39] Y.-L. Huang, J. H. Hsieh, W.-C. Wang, and Y.-H. Li, "Investigation of discharge voltage characteristics of a lanthanum hexaboride heaterless hollow cathode," Acta Astronautica, vol. 226, pp. 760-771, 2025.
    [40] D. Lev and L. Appel, "Heaterless hollow cathode technology-a critical review," Space Propulsion 2016, no. 2-6, pp. 1-11, 2016.
    [41] D. M. Goebel and A. R. Payman, "Heaterless 300 A lanthanum hexaboride hollow cathode," Review of Scientific Instruments, vol. 94, no. 3, 2023.
    [42] A. Daykin-Iliopoulos, S. Gabriel, I. Golosnoy, K. Kubota, and I. Funaki, "Investigation of heaterless hollow cathode breakdown," 2015.
    [43] Z.-X. Ning et al., "10000-ignition-cycle investigation of a LaB 6 hollow cathode for 3–5-kilowatt hall thruster," Journal of Propulsion and Power, vol. 35, no. 1, pp. 87-93, 2019.
    [44] D. L. Brown, M. L. Walker, J. Szabo, W. Huang, and J. E. Foster, "Recommended practice for use of Faraday probes in electric propulsion testing," Journal of Propulsion and Power, vol. 33, no. 3, pp. 582-613, 2017.
    [45] H. Valentin and M. Stéphane, "Optimization of a Faraday Cup Collimator for Electric Propulsion Device Beam Study: Case of a Hall Thruster," Applied Sciences, vol. 11, no. 5, p. 2419, 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/5/2419.
    [46] T. Hallouin and S. Mazouffre, "Far-Field Plume Characterization of a 100-W Class Hall Thruster," Aerospace, vol. 7, no. 5, p. 58, 2020. [Online]. Available: https://www.mdpi.com/2226-4310/7/5/58.
    [47] M. L. Walker, A. L. Victor, R. R. Hofer, and A. D. Gallimore, "Effect of backpressure on ion current density measurements in hall thruster plumes," Journal of Propulsion and Power, vol. 21, no. 3, pp. 408-415, 2005.
    [48] K. Kwon, M. Walker, and D. Mavris, "Self-consistent, one-dimensional analysis of the Hall effect thruster," Plasma Sources Science and Technology, vol. 20, p. 045021, 07/07 2011, doi: 10.1088/0963-0252/20/4/045021.
    [49] K. Diamant, R. Liang, and R. Corey, The Effect of Background Pressure on SPT-100 Hall Thruster Performance. 2014.
    [50] J. M. Sankovic, J. A. Hamley, and T. W. Haag, "Performance evaluation of the Russian SPT-100 thruster at NASA LeRC," in IEPC Conference, 1994, no. IEPC-93-094.
    [51] J. M. Coey, Magnetism and magnetic materials. Cambridge university press, 2010.
    [52] N. Gondol, C. Drobny, O. Neunzig, and M. Tajmar, "Development and characterization of a miniature hall-effect thruster using permanent magnets," in 36th Int. Electr. Propuls. Conf. Univ, 2019, p. 634.
    [53] G. Zhang et al., "Development of a low-power Hall thruster with permanent magnets and a dual trigger electrode hollow cathode for the Qilu satellite constellation," Aerospace Science and Technology, vol. 154, p. 109538, 2024.
    [54] A. Leufroy, T. Gibert, and A. Bouchoule, "Characteristics of a permanent magnet low-power Hall thruster," in Proceedings of the 31th International Electric Propulsion Conference (Ann Arbor), IEPC-2009-083, 2009, vol. 134.
    [55] M. A. Lieberman and A. J. Lichtenberg, "Principles of plasma discharges and materials processing," MRS Bulletin, vol. 30, no. 12, pp. 899-901, 1994.
    [56] G. P. Sutton and O. Biblarz, Rocket propulsion elements. John Wiley & Sons, 2011.
    [57] Y.-L. Huang, "Investigation of Discharge Voltage Characteristics in Lanthanum Hexaboride Heaterless Hollow Cathode", M.S. thesis, Department of Aeronautics and Astronautics, National Cheng Kung University, 2023
    [58] D. Ma, Q. Yu, X. Liu, D. Zeng, H. Li, and D. Yu, "Magnetic focusing of low-power Hall thruster with a center-mounted hollow cathode," Vacuum, vol. 218, 2023, doi: https://doi.org/10.1016/j.vacuum.2023.112650.
    [59] R. R. Hofer and A. D. Gallimore, "High-specific impulse Hall thrusters, part 2: efficiency analysis," Journal of Propulsion and Power, vol. 22, no. 4, pp. 732-740, 2006.
    [60] L. Ren et al., "Effect of magnetic field strength on the performance characterization of a low-power wall-less Hall thruster," Vacuum, vol. 220, p. 112820, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.vacuum.2023.112820.
    [61] D. Fujita et al., "Operating parameters and oscillation characteristics of an anode-layer Hall thruster with argon propellant," Vacuum, vol. 110, pp. 159-164, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.vacuum.2014.07.022.
    [62] S. Mazouffre and L. Grimaud, "Characteristics and performances of a 100-W Hall thruster for microspacecraft," IEEE Transactions on Plasma Science, vol. 46, no. 2, pp. 330-337, 2018.
    [63] S. S. E. Team. " Xenon, Krypton or Argon Propellants for Hall Thruster: Efficiency, Properties, Applications and Cost." Sets.Space. https://sets.space/xenon-krypton-or-argon-propellants-for-hall-thruster-efficiency-properties-applications-and-cost/ (accessed June 21, 2025, 2025).
    [64] Y. Raitses, J. Ashkenazy, G. Appelbaum, and M. Guelman, "Experimental investigation of the effect of channel material on Hall thruster characteristics," in 25th International Electric Propulsion Conference, Cleveland, OH, 1997.
    [65] C. F. Book and M. L. Walker, "Effect of anode temperature on hall thruster performance," Journal of Propulsion and Power, vol. 26, no. 5, pp. 1036-1044, 2010.

    QR CODE