| 研究生: |
王建基 Wang, Jian-Ji |
|---|---|
| 論文名稱: |
不完美製程下允許缺貨後補之經濟批量模式探討 The Economic Production Quantity with Backorder under Imperfect Process |
| 指導教授: |
張秀雲
hang, Shiow-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 經濟生產批量 、不良品 、允許缺貨 、不完美製程 、保固成本 |
| 外文關鍵詞: | warranty cost, imperfect production process, backorder, EPQ, defective items |
| 相關次數: | 點閱:161 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以經濟生產批量(EPQ)且允許缺貨後補為基本架構,放寬部份傳統理論的假設限制並提出兩種模式來討論,一則是考慮生產過程中生產設備可能會有異常的狀況發生對整體生產總成本與生產週期時間的影響。其二為在具重修不良品模式下考慮保固成本對生產模式的影響。在實際生產實務上,製程並非一設置後就能運作到汰舊換新的階段而沒有出現任何異常狀況,因生產過程因為設備上的損耗而會造成不良品、報廢品的產生。故本研究的主要的目的在調整傳統EPQ模式,減少與實際情況的偏差。根據生產情況各項因素,設定最佳的生產時間,達到總成本為最小為目的。
本研究方法是將實際上會產生的問題導入數學模式呈現,由模式的推導與數學軟體的輔助來得到全域或局部之最佳化的生產時間、缺貨量與生產成本。根據數值分析的結果得知在兩種模式中其單位時間期望總成本均小於EPQ模式所獲得的成本。此外,經由敏感度分析可得到參數對決策變數的影響程度。就數據觀察得知,對整體生產系統的影響為單位生產率、單位需求率、整備成本、單位缺貨的影響程度較為明顯。相對地,其餘參數如製程退化平均次數對決策變數的影響程度較小。
Determining the economic production quantity (EPQ) or production cycle length under various conditions has considerable researches. Typical models for determining the EPQ assume that the quality of products and production process are perfect. In practice, due to the deterioration of production, generate of defective items is inevitable.
This paper presents two models to solve the economic production quantity with backorder under imperfect production process. The first EPQ model incorporates the effect of shift of production rate and the generation of defective items in production cycle time decision. The second model considers an unreliable production system with warranty cost.
This paper develops mathematical models to minimize total production cost per unit time via calculus and Mathematica. We obverse the two modified models are better then traditional EPQ models in the numerical examples. Sensitivity analysis is performed. The results indicate that production rate, demand rate, setup cost, shortage cost are sensitive to overall production system and other parameters are insensitive.
洪維恩,Mathematia數學運算大師(第五版),台北市:旗標出版社,2006。
楊詠新,不完美品質下易腐商品經濟訂購量之探討,成功大學工業與資訊管理學系碩士論文,台南市,2008。
賴俊宏,在EPQ模式下含機器當機(AR)型及重工之最佳生產週期,朝陽科技大學工業工程與管理系碩士論文,台中縣,2005。
Ben-Daya, M., Hariga, M., & Khursheed, S. N. Economic production quantity model with a shifting production rate. International Transactions in Operational Research, 15(1), 87-101, 2008.
Chen, C. K., & Lo, C. C. Optimal production run length for products sold with warranty in an imperfect production system with allowable shortages. Mathematical and Computer Modelling, 44(3-4), 319-331, 2006.
Cheng, T. C. E. An Economic Order Quantity Model with Demand-Dependent Unit Production Cost and Imperfect Production Processes. IIE Transactions, 23(1), 23-28, 1991.
Chiu, S. W., Yang, J.-C., & Kuo, S.-Y. C. Manufacturing Lot Sizing with Backordering, Scrap, and Random Breakdown Occurring in Inventory-Stacking Period, WSEAS Transactions on Mathematics, 7(4), 183-194, 2008.
Chiu, Y. P. Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engineering Optimization, 35(4), 427-437, 2003.
Chung, K. J. Bounds for Production Lot Sizing with Machine Breakdowns. Computers & Industrial Engineering, 32(1), 139-144, 1997.
Chung, K. J., & Hou, K. L. An Optimal Production Run Time with Imperfect Production Processes and Allowable Shortages. Computers and Operations Research, 30(4), 483-490, 2003.
Das, C. The (S-1,S) Inventory Model under Time Limit on Backorders. Operations Research, 25(5), 835-850, 1977.
Groenevelt, H., Pintelon, L., & Seidmann, A. Production Lot Sizing with Machine Breakdowns. Management Science, 38(1), 104-123, 1992.
Hariga, M., & Ben-Daya, M. Some Stochastic Inventory Models with Deterministic Variable Lead Time. European Journal of Operational Research, 113(1), 42-51, 1999.
Harris, F. W. Operations and Cost. Factory Management Series, 48-52, 1915.
Kim, C. H., & Hong, Y. An Extended EMQ Model for a Failure Prone Machine with General Lifetime Distribution. International Journal of Production Economics, 49(3), 215-223, 1997.
Lee, H. L., & Rosenblatt, M. J. Simultaneous Determination of Production Cycle and Inspection Schedules in a Production Systems. Management Science, 33(9), 1125-1136, 1987.
Makis, V., & Fung, J. An EMQ Model with Inspections and Random Machine Failures. The Journal of the Operational Research Society, 49(1), 66-76, 1998.
Moinzadeh, K. Operating Characteristics of the (S - 1, S) Inventory System with Partial Backorders and Constant Resupply Times. Management Science, 35(4), 472-477, 1989.
Montgomery, D. C., Bazaraa, M. S., & Keswani, A. K. Inventory Models with a Mixture of Backorders and Lost Sales. Naval Research Logistics Quarterly, 20(2), 255-263, 1973.
Porteus, E. L. Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction. Operations Research, 34(1), 137-144, 1986.
Rardin, R. L. Optimization in Operations Research. New Jersey: Prentice Hall, 1998.
Rosenblatt, M. J., & Lee, H. L. Economic Production Cycles with Imperfect Production Processes. IIE Transactions, 18(1), 48-55, 1986.
Salameh, M. K., & Jaber, M. Y. Economic Production Quantity Model for Items with Imperfect Quality. International Journal of Production Economics, 64(1-3), 59-64, 2000.
Schwaller, R. L. EOQ under Inspection Costs. Production and Inventory Management, 29(3), 22-24, 1988.
Taft, E. W. The Most Economical Production Lot. The Iron Age, 101, 1410–1412, 1918.
Zhang, X., & Gerchak, Y. Joint Lot Sizing and Inspection Policy in an EOQ Model with Random Yield. IIE Transactions, 22(1), 41-47, 1990.