| 研究生: |
蘇家永 Su, Chia-Yung |
|---|---|
| 論文名稱: |
合成氧化矽/硫化鉬混合物的中空奈米球殼在光熱治療與超聲波顯影的生醫應用 Hollow Silica/MoS2 Hybrid Nanoshell Developed as Echogenic and Photothermal Transduction Agents |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 硫化鉬 、氧化矽 、中空球殼 、光熱治療 、超聲波顯影 |
| 外文關鍵詞: | MoS2, silica, nanoshell, hyperthermia, ultrasound imaging |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維結構的硫化鉬在近紅外光具有吸收特性,其生物醫學的應用在近年來蓬勃發展,然而受限於材料本身的物理性質與製備方法,合成具幾何結構的形狀外貌有其難度,尚未報導高均勻性的零維硫化鉬材料導入癌症治療之領域。因此,本篇發展氧化矽/硫化鉬混合結構的中空奈米球殼作為治療試劑,起初以多孔性氧化矽奈米球體為模板,添加鉬的前驅物以及硫脲在酸性條件下水熱反應,並執行退火與鹼蝕的程序,此技術能進一步控制中空奈米球殼的顆粒尺寸與球殼厚度。此外,本篇首先證實硫化鉬相關材料具有超聲波顯影的潛力,且顯影效果受到合成球殼之厚薄大小的形貌影響,能使載體具備有效治療與診斷功能的卓越表現。
Two dimensional MoS2 with graphene-like layered structure have been already reported its promising potential for biomedical applications of theranostic agents. However, MoS2 nanosheets have suffered from the wide distribution of their size due to the manner of preparation resulting in the presence of the inevitable irregular shape. Until now, it have been plagued with no further controllable shapes of MoS2 morphology that was explored for biomedical applications except layered structure. We develop a zero dimensional hollow silica/MoS2 hybrid nanoshells (h-SiO2/MoS2) as theranostic agents. Starting with SiO2 nanosphere as a template through a hydrothermal reaction of Na2MoO4 and thiourea in the acidic environment formed MoS3 on the surface of SiO2. Subsequently, the pyrolysis transformed to MoS2 followed by an etching procedure for using PBS (pH = 10) to generate a hollow structure. The h-SiO2/MoS2 also acts as echogenic source to give ultrasound imaging that is not seen using layered structure. What’s more, it is a successful course of experiment that can control the particle size and shell thickness of h-SiO2/MoS2, which presents the effective photothermal therapy and the diverse echogenic effect.
[1] Wang, H.; Yuan, H.; Hong, S. S.; Li, Y.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664-2680.
[2] Zhao, W.; Ribeiro, R. M.; Eda, G. Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Acc. Chem. Res. 2015, 48, 91-99.
[3] Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J.; Brinker, C. J.; Dravid, V. P. Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents. Angew. Chem. Int. Ed. 2013, 52, 4160-4164.
[4] Xu, S.; Li, D.; Wu, P. One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.
[5] Wang, S.; Li, X.; Chen, Y.; Cai, X.; Yao, H.; Gao, W.; Zheng, Y.; An, X.; Shi, J.; Chen, H. A Facile One-Pot Synthesis of a Two-Dimensional MoS2/Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy. Adv. Mater. 2015, 27, 2775-2782.
[6] Li, W.-P.; Su, C.-H.; Chang, Y.-C.; Lin, Y.-J.; Yeh, C.-S. Ultrasound-Induced Reactive Oxygen Species Mediated Therapy and Imaging Using a Fenton Reaction Activable Polymersome. ACS Nano 2016, 10, 2017-2027.
[7] Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets. ACS Nano 2014, 8, 5297-5303.
[8] Zeng, Z.; Sun, T.; Zhu, J.; Huang, X.; Yin, Z.; Lu, G.; Fan, Z.; Yan, Q.; Hng, H. H.; Zhang, H. An Effective Method for the Fabrication of Few-Layer-Thick Inorganic Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 9052-9056.
[9] Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug Delivery with PEGylated MoS2 Nano-sheets for Combined Photothermal and Chemotherapy of Cancer. Adv. Mater. 2014, 26, 3433-3440.
[10] Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano 2014, 8, 6922-6933.
[11] Liu, T.; Wang, C.; Cui, W.; Gong, H.; Liang, C.; Shi, X.; Li, Z.; Sun, B.; Liu, Z. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 2014, 6, 11219-11225.
[12] Liu, T.; Shi, S.; Liang, C.; Shen, S.; Cheng, L.; Wang, C.; Song, X.; Goel, S.; Barnhart, T. E.; Cai, W.; Liu, Z. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radio labeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano 2015, 9, 950-960.
[13] Yu, J.; Yin, W.; Zheng, X.; Tian, G.; Zhang, X.; Bao, T.; Dong, X.; Wang, Z.; Gu, Z.; Ma, X.; Zhao, Y. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics 2015, 5, 931-945.
[14] Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206-217.
[15] Shi, Y.; Li, H.; Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.
[16] Bang, J. H.; Suslick, K. S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 2010, 22, 1039-1059.
[17] Tan, L.; Wang, S.; Xu, K.; Liu, T.; Liang, P.; Niu, M.; Fu, C.; Shao, H.; Yu, J.; Ma, T.; Ren, X.; Li, H.; Dou, J.; Ren, J.; Meng, X. Layered MoS2 Hollow Spheres for Highly-Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small 2016, 12, 2046-2055.
[18] Wang, Y.; Yu, L.; Lou, X.-W. Synthesis of Highly Uniform Molybdenum–Glycerate Spheres and Their Conversion into Hierarchical MoS2 Hollow Nanospheres for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2016, 55, 1-5.
[19] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74-80.
[20] Yu, X.-Y.; Hu, H.; Wang, Y.; Chen, H.; Lou, X. W. Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angew. Chem. Int. Ed. 2015, 54, 7395-7398.
[21] Jin, J.; Kim, B.; Kim, M.; Park, N.; Kang, S.; Lee, S. M.; Kim, H. J.; Son, S. U. Template synthesis of hollow MoS2-carbon nanocomposites using microporous organic polymers and their lithium storage properties. Nanoscale 2015, 7, 11280-11285.
[22] Zhou, F.; Xin, S.; Liang, H.-W.; Song, L.-T.; Yu, S.-H. Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance. Angew. Chem. Int. Ed. 2014, 53, 11552-11556.
[23] Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive Imaging of Nanomedicines and Nanotheranostics: Principles, Progress, and Prospects. Chem. Rev. 2015, 115, 10907-10937.
[24] An, L.; Hu, H.; Du, J.; Wei, J.; Wang, L.; Yang, H.; Wu, D.; Shi, H.; Li, F.; Yang, S. Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 2014, 35, 5381-5392.
[25] Malvindi, M. A.; Greco, A.; Conversano, F.; Figuerola, A.; Corti, M.; Bonora, M.; Lascialfari, A.; Doumari, H. A.; Moscardini, M.; Cingolani, R.; Gigli, G.; Casciaro, S.; Pellegrino, T.; Ragusa, A. Magnetic/Silica Nanocomposites as Dual-Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography. Adv. Funct. Mater. 2011, 21, 2548-2555.
[26] Zhang, K.; Chen, H.; Guo, X.; Zhang, D.; Zheng, Y.; Zheng, H.; Shi, J. Double-scattering/reflection in a Single Nanoparticle for Intensified Ultrasound Imaging. Sci. Rep. 2015, 5, srep08766.
[27] Zhang, K.; Chen, H.; Li, P.; Bo, X.; Li, X.; Zeng, Z.; Xu, H. Marriage Strategy of Structure and Composition Designs for Intensifying Ultrasound & MR & CT Trimodal Contrast Imaging. ACS Appl. Mater. Interfaces 2015, 7, 18590-18599.
[28] Wan, Z.; Shao, J.; Yun, J.; Zheng, H.; Gao, T.; Shen, M.; Qu, Q.; Zheng, H. Core-Shell Structure of Hierarchical Quasi-Hollow MoS2 Microspheres Encapsulated Porous Carbon as Stable Anode for Li-Ion Batteries. Small 2014, 10, 4975-4981.
[29] Hao, X.; Hu, X.; Zhang, C.; Chen, S.; Li, Z.; Yang, X.; Liu, H.; Jia, G.; Liu, D.; Ge, K.; Liang, X.-J.; Zhang, J. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. ACS Nano 2015, 9, 9614-9625.
[30] WeiZhang; TianhuaZhou; Zheng, J.; Hong, J.; Pan, Y.; Xu, R. Water-Soluble MoS3 Nanoparticles for Photocatalytic H2 Evolution. ChemSusChem 2015, 8, 1464-1471.
[31] Huang, Z.; Wang, C.; Pan, L.; Zhang, C. Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy 2013, 2, 1337-1346.
[32] Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[33] Chang, C. H.; Chan, S. S. Infrared and Raman studies of amophous MoS3 and poorly crystalline MoS2. J. Catal. 1981, 72, 139-148.
[34] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2012, 12, 526-526.
[35] Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.
[36] Lin, P.-L.; Eckersley, R. J.; Hall, E. A. H. Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range. Adv. Mater. 2009, 21, 3949-3952.
[37] Zoldesi, C. I.; Steegstra, P.; Imhof, A. Encapsulation of emulsion droplets by organo-silica shells. Colloid Interface Sci. 2007, 308, 121-129.