| 研究生: |
陳星睿 Chen, Sing-ruei |
|---|---|
| 論文名稱: |
LaAlGe2O7:Tm螢光體添加助熔劑之光致發光性質研究 Photo-luminescent properties of LaAlGe2O7:Tm phosphor added with fluxes |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 光致發光 、助熔劑 、LaAlGe2O7 |
| 外文關鍵詞: | photo-luminescent, flux, LaAlGe2O7 |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為嘗試添加助熔劑於螢光體,以期改善發光效率,並研究其特性。選擇色純度高、發藍光的LaAlGe2O7: Tm3+螢光粉體為研究對象,分別摻雜Li2CO3、Na2CO3、K2CO3、Bi2O3、H3BO3等五種助熔劑,觀察其光致發光特性。
摻雜助熔劑於LaAlGe2O7: Tm3+螢光粉體,發現激發與放射光譜的波形與峰值位置並無改變,僅強度上的變化,因此著重於助熔劑的摻雜與放射光強度的變化關係。觀察在360nm光源激發下,Tm3+離子所放出的453nm(1D2→3F4)藍光強度。
實驗結果顯示,鹼金屬中Li+的添加,能使LaAlGe2O7: Tm3+螢光粉體在900℃即開始成相,Na+則使其於1000℃開始成相,均能有效降低成相溫度,提高結晶性。鹼金屬離子與鑭離子價數上的不匹配,因電荷補償機制而引入,發揮增感劑功效的氧空缺。以上,為鹼金屬族對LaAlGe2O7: Tm3+螢光粉體放射光強度改善的重要原因。
從發光效率的改善來看,利用取代方式的添加,改善情形優於額外添加的方式;從助熔劑的種類來分,於1200℃時,效率改善最大值分別為B3+(~150%)、Li+(~140%)、Bi3+(~120%)、Na+(~120%)、K+(~110%),顯示H3BO3與Li2CO3具有優良的改善效果,深具利用價值。
The object of this study is expected to improve the photo-luminescent efficiency of a phosphor by added fluxes. LaAlGe2O7: Tm3+ phosphor is chosen as carrier, doped with Li2CO3, Na2CO3, K2CO3, Bi2O3, H3BO3 as fluxes.
There are no obvious changes in the excitation and emission spectrum when doped with fluxes. The dependence of the blue light emitting intensity of 453nm from Tm3+ ion to the fluxes was examined.
The experimental results demonstrated that alkali ions can lower the phase formation temperature effectively. Subsequently, oxygen vacancies can be introduced into the host lattice by charge compensation mechanism. Those are the important courses that improve the emission intensity by alkali group.
Finally, compared the intensity improvements of the B3+(~150%), Li+(~140%), Bi3+(~120%), Na+(~120%), K+(~110%) ions, it shows better effects in the H3BO3 and Li2CO3 fluxes for future progress.
1 . 楊素華,“螢光粉在發光上的應用”,科學發展 358期,2002年10月,p.67。
2 . 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,(2003)。
3 . 劉如熹、王健源、石景仁,“白光發光二極體之螢光材料介紹”,光訊 第91期2001年8月,p.30。
4 . D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, IEEE J. Sel Top. Quant. 8, (2002) 310.
5 . S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, J. Electrochem. Soc., 138 (1991) 1509.
6 . S. Itoh, M. Yokoyama, and K. Morimoto, J. Vac. Sci. Technol., A5 (1987) 3430.
7 . L. D. Carlos, V. de Zea Bermudez, and R. A. Sá Ferreira, J. Non-Cryst. Solids, 247 (1999) 203.
8 . P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, and X. Jing, J. Lumin., 105 (2003) 61.
9 . 林暉然,鍺酸鹽YxInGe2O7: R1-x (R= Eu, Tb, Tm)之螢光特性研究,國立成功大學材料科學及工程學系碩士論文,民國95年。
10 . S. Shionoya and W. M. Yen, “Phosphor Handbook”, CRC press, Boca Raton, (1999).
11 . J. A. Deluca, “An Introduction to Luminescence in Inorganic Solids”, J. Chem. Edu. 57 (1980) 541
12 . 蔡濱祥,尖晶石(MgxZn1-x)(In2-yGay)O4: Eu3+, Tb3+螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國94年。
13 . D.R.Vij, “Luminescence in Solids” Plenum press, New York (1998).
14 . 李育群,鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國96年。
15 . 劉如熹, 劉宇恆, “發光二極體用氧氮螢光粉介紹”, 全華科技, (2006)
16 . Humboldt W. Leverenz, “An Introduction to Luminescenece of Solids”, John Wiley & Sons: New York, (1950).
17 . C. Nin Chau and D, C. Seymour, Phosphor global summit, Sylvania, (2006).
18 . J. R. Lakowicz, “Principle of Fluorescence Spectroscopy-2nd ed”, Kluwer Academic/Plenum Pub, New York, (1999).
19 . R. C. Ropp, “Luminescence and the Solid State-2nd ed.”, Elsevier.: Amsterdam, (2004).
20 . 郝士明,漫談晶體結構學,正大印書館股份有限公司,台北,民86
21 . T. Jstel, Phosphor global summit, San Diego, (2006).
22 . G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, (1994).
23 . 劉如熹、王健源,“白光發光二極體用製作技術”,全華科技,(2001)。
24 . G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland (1979) p.237.
25 . T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep. (1983).
26 . G. Adachi, “Rare Earths-Their Properties and Applications”, Gihodo (1980) p.173.
27 . O. Jarchow, K. –H. Klaska, H. Schenk, Naturwissenschaften., 68 (1981) 475.
28 . O. Jarchow, K. –H. Klaska, H. Schenk-Strauss, Z. Kristallogr., 172 (1985) 159.
29 . A. A. Kaminskii, B. V. Mill, A. V. Butashin, E. L. Belokoneva, K. Kurbanov, Phys. Stat. Sol. (a)., 103 (1987) 575.
30 . E. A. Juarez-Arellano, J. Campa-Molina, S. Ulloa-Godinez, L. Bucio and E. Orozco, Mater. Res. Soc. Symp. Proc., 848 (2005) 293.
31 . G. Lozano, C. Cascales, C. Zaldo and P. Porcher, J. Alloys Comp., 303-304 (2000) 349.
32 . C. Cascales, G. Lozano , C. Zaldo and P. Porcher, Chem. Phys., 257 (2000) 29.
33 . P. M. Lambert, Mater. Res. Bull. 35, 383 (2000).
34 . K. Tkacova, “Mechanical activation of minerals”, Amsterdam (1989)
35 . Y. C. Li, Y. H. Chang, Y. F. Lin, Y. J. Lin, “High Color Purity Phosphors of LaAlGe2O7 Doped with Tm3+ and Er3+”, Appl. Phys. Lett. 89, 081110, (2006).
36 . R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studeis of Interatomic Distances in Halides and Chalcogenides”, Acta Cryst. A32, 751, (1976).
37 . S. Oshio, T. Matsuoka, S. Tanaka and H. Kobayashi, J. Electrochem. Soc. 145, 3898, (1998).
38 . S. H. Byeon, M. G. Ko, J. C. Park, D. K. Kim, “Low-Temperature Crystallization and Highly Enhanced Photoluminescence of Gd2-xYxO3: Eu3+ by Li Doping”, Chem. Mater. 14, 603, (2002).
39 . Y. C. Kang, H. D. Park, and S. B. Park, Jpn. J. Appl. Phys. 39, L1305, (2000).
40 . D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, J. Lumin., 101 (2003) 23.
41 . H. Shigemura, Y. Kawamoto, J. Nishii, and M. Takahashi, J. Appl. Phys., 85 (1999) 3413.
42 . M. Kahketsu, L. Awazu, H. Kawazoe, and M. Yamane, Jpn. J. Appl. Phys., 28 (1989) 622.
43 . S. H. Sohn, D. G. Hyun, A. Yamada, and Y. Hamakawa, “Electroluminescence in Li-Codoped ZnS: TmF3 Thin-Film Devices”, Appl. Phys. Lett. 62, (1993).
44 . S. H. Yang, and M. Yokoyama, “The Effect of Li, Cu and Zn Doping on the Luminance and Conductivity of Blue ZnGa2O4 Phosphor”, Jpn. J. Appl. Phys. 37, 6429, (1998).
45 . F. A. Kröger and V. J. Vink: Solid State Phys. 3, 307, (1956).
46 . O. A. Lopez, J. McLittrick, L. E. Shea, “Fluorescence Properties of Polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated in the Visible and near IR ranges”, J. Lumin. 71, 1, (1997).
47 . D. Hommel and H. Hartmann, J. Cryst. Growth 72, 346, (1985).
48 . J. Y. Cho, Y. R. Do, and Y. D. Huh, “Analysis of the Factors Governing the enhanced Photoluminescence Brightness of Li-doped Y2O3: Eu Thin-Film Phosphors”, Appl. Phys. Lett. 89, 131915, (2006).
49 . S. S. Yi, J. S. Bae, K. S. Shim, J. H. Jeong, J. C. Park, and P. H. Holloway, “Enhanced Luminescence of Gd2O3: Eu3+ Thin-Film Phosphors by Li Doping”, Appl. Phys. Lett. 84, (2004).
50 . J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and Cathodoluminescence of Li-doped Gd2O3: Eu3+, a Red Phosphor Operating at Low Voltages”, Appl. Phys. Lett. 77, (2000).
51 . K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic Structure and Optical Properties of Europium-Activated Yttrium Oxide Phosphor”, Phys. Rev. B45, (1992).
52 . X. Liu, X. Xu, M. Gu, L. Xiao, K. Han, R. Zhang, “Enhanced Luminescence of GdTaO4: Eu3+ Thin-Film Phosphors by K Doping”, Appl. Surf. Sci. 253, 4344, (2007).
53 . E. Antic-Fidancev, J. Holsa, M. Lastusaari, A. Lupei, Phys. Rev. B64, 195108, (2001).