| 研究生: |
張柏雄 Chang, Po-Hsiung |
|---|---|
| 論文名稱: |
穿音速凸角流之實驗研究 An Experimental Study on Transonic Convex-Corner Flows |
| 指導教授: |
鍾光民
Chung, Kung-Ming 張克勤 Chang, Keh-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 凸角流 、震波 、表面壓力 、表面壓力擾動值 、相似參數 |
| 外文關鍵詞: | convex corner, Reynolds number, shock, pressure fluctuations, similarity parameter, zero-cross frequency |
| 相關次數: | 點閱:118 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
提升飛行器的空氣動力特性一直都是飛機設計的一大重點,在設計飛行器的機翼時通常會加入高升力裝置,以滿足飛行器在不同的飛行條件所需的升力(如飛行器在起飛或降落過程)。除此之外,前人之研究亦利用控制面改變機翼之幾何外形,在巡航過程中能有較高的升力或俯仰力矩,然而當後緣襟翼之偏轉角(deflection angle)達到一臨界角度時,襟翼上表面可能產生界邊層分離,因此在機翼弧線最佳化的設計上仍需進一步考量。其次,後緣襟翼上表面流場可用簡單的凸角流來模擬。若自由流為超音速,即為一般熟悉的Prandtl-Meyer Expansion。當自由流為次音速,前人之研究指出在接近凸角時,流場因黏滯與非黏滯交互作用的影響產生擴張波,當自由流馬赫數及凸角角度增加時,次音速流場將轉換成穿音速流場,甚至有震波的產生。而當震波達到一定強度時,會進一步導致凸角下游邊界層分離。
本研究依據前人研究的結果,進一步探討雷諾數( 8.04 × 104 - 1.63 × 105)對單一凸角流的影響,由表面壓力結果顯示,在設定的雷諾數範圍內,雷諾數對於穿音速凸角流流場的影響不大。其次,本研究亦分析圓凸角流及雙凸角流的特性,一般而言,在相同的總凸角角度條件下,較低之馬赫數尖峰值將延遲流場由次音速轉換至穿音速。此外,在圓凸角流及雙凸角流的流場中,亦觀察到二次擴張波,此一現象應與兩個lambda shock結構相關。在壓力擾動方面,在較低雷諾數的測試條件下,當邊界層分離時,其壓力擾動值較高,可歸因於較短的分離泡長度。而圓鈍型凸角流及雙凸角流之壓力擾動值則明顯降低。由先前的研究得知壓力擾動值與馬赫數尖峰值成正相關;因此,在圓凸角流及雙凸角流的流場中,所觀察到較低馬赫數尖峰值可用以解釋此時的較低壓力擾動值。
最後,利用hodograph equation 所推導出來的相似參數β (=M^2 η/√(1-M^2 ))適合用於分析可壓縮凸角流。根據在雷諾數效應、圓凸角流及雙凸角流的實驗中,其最小表面壓力(或馬赫數尖峰值)亦與β呈正相關。而壓力擾動值也有類似的現象,但在高馬赫數及大偏轉角之測試條件下,震波震盪的現象亦導致壓力擾動值有一個明顯的躍升。
Improving aircraft performance is one of the major goals in the aviation design. In the past decade, there have been many attempts to improve the aerodynamic efficiency of aircraft. One of the methods is to maximize lift-to-drag ratio in different flight conditions. To achieve this, the wing of airplane must be able to change its configuration, using deflected control surface. Such device like flaps and ailerons could be employed to provide variable camber control within the operational flight envelopes.
Previous investigations have shown that the convex corner is an idealized configuration that be used to model the compressible flows over the deflection control surface at off-design condition. The general characteristics of the flowfield include sudden expansion near the corner followed by recompression. In the research presented in this dissertation, a series of experiments of transonic convex corner flows were performed to investigate the aerodynamic characteristics and to gain a good insight into the interaction of a shock wave and a turbulent boundary layer. First, two flat plates with different lengths were used to develop naturally different incoming boundary layer thicknesses or Reynolds numbers. The Reynolds number ranged from 8.04 × 104 to 1.63 × 105. Compared to subsonic expansion flow, the Reynolds number has an influence on the flow expansion and compression near the corner apex in the transonic flow regime. The subsequent work focused on transonic round convex-corner. Test models with three different radii of curvature from 13.7 to 41.7 times the upstream boundary layer thickness were employed. The total turning angles were 13-, 15- and 17-deg. It was found that the peak Mach number decreased with increasing radius of curvatures for a given turning angle. Finally, experiments were performed wherein a presence of bi-convex corner. The total turning angle ranged from 10- to 17-deg, in which the first convex-corner angle 1 was 5- or 7-deg. It was known that the length of the first corner L1 also plays an important role. With increasing L1, the less flow expansion is observed, while a shorter L1 resulted in a more significant decrease in the amplitude of (σp/pw)max. Not only the bi-convex corner, but also the round convex-corner was observed dual expansion process in transonic expansion flows. In addition, a delay in the transition from subsonic to transonic flows was found in both test configurations. A similarity parameter β (=M^2 η/√(1-M^2 )) was also employed to correlate the Mpeak, (σp/pw)max and shock-induced boundary-layer separated length. The experimental results showed that the shock structure, boundary-layer separation and peak fluctuating pressure were dependent on freestream Mach number, turning angle and model geometry. The two-threshold method was also used to estimate the zero-cross frequency. The relationship between peak pressure fluctuations and zero-cross frequency was obtain and compared with results from the studies using sharp convex corner.
Ackeret, J., Feldmann, F., and Rott, N., 1947, “Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed.” NACA TM-1113.
Adamson, T. C., and Messiter, A. F., 1980, “Analysis of Two-Dimensional Interactions between Shock-Waves and Boundary-Layers.” Annual Review of Fluid Mechanics, Vol. 12, pp. 103-138. doi: 10.1146/annurev.fl.12.010180.000535
Adrian, R. J., Meinhart, C. D., and Tomkins, C. D., 2000, “Vortex Organization in the Outer Region of the Turbulent Boundary Layer.” Journal of Fluid Mechanics, Vol. 422, pp. 1-54.
Anderson, J. D., 1990, Modern Compressible Flow with Historical Perspective, McGraw-Hill, New York.
Andreopoulos, J., and Muck, K. C., 1987, “Some New Aspects of the Shock-Wave/Boundary-Layer Interaction in Compression-Ramp Flows.” Journal of Fluid Mechanics, Vol. 180, pp. 405-428. doi: 10.1017/s0022112087001873
Ardonceau, P. L., 1984, “The Structure of Turbulence in a Supersonic Shock-Wave/Boundary-Layer Interaction.” AIAA journal, Vol. 22, No. 9, pp. 1254-1262.
Arnal, D., and Delery, J., 2004, “Laminar-Turbulent Transition and Shock Wave/Boundary Layer Interaction.” Office National d Etudes Et De Recherches Aerospatiales Onera-Publicaitons-Tp(109).
Beresh, S. J., Clemens, N. T., and Dolling, D. S., 2002, “Relationship Between Upstream Turbulent Boundary-Layer Velocity Fluctuations and Separation Shock Unsteadiness.” AIAA Journal, Vol. 40, No. 12, pp. 2412-2422. doi: 10.2514/2.1609
Bernardini, M., Pirozzoli, S., and Grasso, F., 2011, “The Wall Pressure Signature of Transonic Shock/Boundary Layer Lnteraction.” Journal of Fluid Mechanics, Vol. 671, pp. 288-312. doi: 10.1017/s0022112010005677
Bies, D. A., 1966, “A Review of Flight and Wind Tunnel Measurements of Boundary Layer Pressure Fluctuations and Induced Structural Response.” NASA CR-626.
Bodonyi, R. J., 1979, “Transonic Laminar Boundary-Layer Flow Near Convex Corners.” The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 32, No. 1, pp. 63-71.
Bodonyi, R. J., and Kluwick, A., 1977, “Freely Interacting Transonic Boundary Layers.” Physics of Fluids, Vol. 20, pp. 1432-1437.
Bodonyi, R. J., and Kluwick, A., 1982, “Supercritical Transonic Trailing-Edge Flow.” The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 35, No. 2, pp. 265-277. doi: DOI 10.1093/qjmam/35.2.265
Bodonyi, R. J., and Kluwick, A., 1998, “Transonic Trailing-Edge Flow.” The Quarterly Journal of Mechanics and Applied Mathematics, Vol. 51, No. 2, pp. 297-310. doi: DOI 10.1093/qjmam/51.2.297
Bolonkin, A., and Gilyard, G. B., 1999, “Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft,” NASA TM-1999-206586.
Bruce, P. J. K., and Babinsky, H., 2009, “Behaviour of Unsteady Transonic Shock/Boundary Layer Interactions with Three-Dimensional Effects.” AIAA Paper, 2009-1590.
Bruce, P. J. K., and Babinsky, H., 2009, “Dynamics of Unsteady Shock Wave Motion.” Shock Wave, pp. 1237-1242.
Brusniak, L., and Dolling, D. S., 1994, “Physics of Unsteady Blunt-Fin-Induced Shock-Wave Turbulent Boundary-Layer Interactions.” Journal of Fluid Mechanics, Vol. 273, pp. 375-409. doi: Doi 10.1017/S0022112094001989
Buter, A., and Breitbach, E., 2000, “Adaptive Blade Twist - Calculations and Experimental Results.” Aerospace Science and Technology, Vol. 4, No. 5, pp. 309-319. doi: Doi 10.1016/S1270-9638(00)00134-6
Chapman, D. R., Kuehn, D. M., and Larson, H. K., 1958, “Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition,” NACA TN-3869.
Chung, K. M., and Lu, F. K., 1990, “Shock-Tube Calibration of a Fast-Response Pressure Transducer.” AIAA Paper, 90-1399.
Chung, K., 1994, “Development and Calibration of ASTRC/NCKU 600 mm× 600 mm Transonic Wind Tunnel. National Science Council Reptort, NSC 83-0424-E-006-141T, Taiwan, ROC.
Chung, K. M., 2000, “Transition of Subsonic and Transonic Expansion-Corner Flows.” Journal of Aircraft, Vol.37, No.6, pp. 1079-1082. doi: Doi 10.2514/2.2714
Chung, K. M., 2002, “Investigation on Transonic Convex-Corner Flows.” Journal of Aircraft, Vol.369, No. 6, pp. 1014-1018. doi: Doi 10.2514/2.3029
Chung, K. M., 2004, “Unsteadiness of Transonic Convex-Corner Flows.” Experiments in Fluids, Vol.37, No. 6, pp. 917-922. doi: 10.1007/s00348-004-0890-3
Chung, K. M., 2007, “Upstream Blowing Jet on Transonic Convex-Corner Flow.” Journal of Aircraft, Vol. 44, No. 6, pp. 1948-1953. doi: 10.2514/1.32203
Chung, K. M., 2010, “Effect of Normal Blowing on Compressible Convex-Corner Flows.” Journal of Aircraft, Vol. 47, No. 4, pp. 1189-1196. doi: 10.2514/1.46889
Chung, K. M., Chang, P. H., and Chang, K. C., 2012, “Flow Similarity in Compressible Convex-Corner Flows.” AIAA Journal, Vol. 50, No. 4, pp. 985-988. doi: 10.2514/1.J051429
Clemens, N. T., and Narayanaswamy, V., 2014, “Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions.” Annual Review of Fluid Mechchanics,Vol.46, pp. 469-492.
Cole, J. D., 1968, “Perturbation Methods in Applied Mathematics.” Blaisdell, Walttham, Mass., pp.79-119.
Corcos, G. M., 1963, “Resolution of Pressure in Turbulence.” Journal of the Acoustical Society of America,Vol.35, No. 2, pp. 192-199.
Delery, J. M., 1983, “Experimental Investigation of Turbulence Properties in Transonic Shock Boundary-Layer Interactions.” AIAA Journal, Vol. 21, No. 2, pp. 180-185. doi: 10.2514/3.8052
Delery, J. M., 1985, “Shock Wave/Turbulent Boundary Layer Interaction and Its Control.” Progress in Aerospace Sciences, Vol. 22, No. 4, pp. 209-280. doi: 10.1016/0376-0421(85)90001-6
Dolling, D. S., and Bogdonoff, S. M., 1981, “An Experimental Investigation of the Unsteady Behavior of Blunt Fin-Induced Shock Wave Turbulent Boundary Layer Interactions.” AIAA Paper, 81-1287.
Dolling, D. S., and Bogdonoff, S. M., 1981, “Scaling of Interactions of Cylinders with Supersonic Turbulent Boundary Layers, AIAA Journal, Vol. 19, No. 5, pp. 655-657.
Dolling, D. S., and Bogdonoff, S. M., 1982, “Blunt Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction.” AIAA Journal, Vol. 20, No. 12, pp. 1674-1680. doi: 10.2514/3.8003
Dolling, D. S., and Bogdonoff, S. M., 1983, “Upstream Influence in Sharp Fin-Induced Shock Wave Turbulent Boundary-Layer Interaction.” AIAA Journal, Vol. 21, No. 1, pp. 143-145.
Dolling, D. S., and Murphy, M. T., 1983, “Unsteadiness of the Separation Shock-Wave Structure in a Supersonic Compression Ramp Flowfield.” AIAA Journal, Vol. 21, No. 12, pp. 1628-1634. doi: 10.2514/3.60163
Dolling, D. S., and McClure, W. B., 1985, “Flowfield Scaling in Sharp Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction. AIAA journal, Vol.32, No. 2, pp. 201-206.
Dolling, D. S., and Or, C. T., 1985, “Unsteadiness of the Shock-Wave Structure in Attached and Separated Compression Ramp Flows.” Experiments in Fluids, Vol. 3, No. 1, pp. 24-32. doi: 10.1007/Bf00285267
Dolling, D. S., and Narlo, J. C., 1987, “Driving Mechanism of Unsteady Separation Shock Motion in Hypersonic Interactive Flow.” Aerodynamics of Hypersonic Lifting Vehicles, AGARD-CR-428.
Dolling, D. S., and Brusniak, L., 1989, “Separation Shock Motion in Fin, Cylinder, and Compression Ramp Induced Turbulent Interactions.” AIAA Journal, Vol. 27, No. 6, pp. 734-742. doi: 10.2514/3.10173
Dolling, D. S., and Smith, D. R., 1989, “Separation Shock Dynamics in Mach 5 Turbulent Interactions Induced by Cylinders.” AIAA journal, Vol. 27, No. 12, pp. 1698-1706.
Dolling, D. S., Boitnott, T., and Erengil, M. E., 1991, “Effects of Moderate Sweepback on the Separation Shock Wave Dynamics in a Mach 5 Compression Ramp Interaction.” AIAA Paper, 91-0254.
Dolling, D. S., and Brusniak, L., 1991, “Correlation of Separation Shock Motion in a Cylinder-Induced Interaction with Pressure Fluctuations under the Separated Region.” AIAA Paper, 91-0650.
Dolling, D. S., 1992, “Effects of Sweep on the Physics of Unsteady Shock-Induced Turbulent Separated Flows.” Aerodynamics, AD-A247035.
Dolling, D. S., 2001, “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?” AIAA Journal, Vol. 39, No. 8, pp. 1517-1531. doi: 10.2514/2.1476
Dou, H. S., Khoo, B. C., and Yeo, K. S., 2006, “Incipient Separation in Shock Wave/Boundary Layer Interactions as Induced by Sharp Fin.” Shock Waves, Vol. 15, No. 6, pp. 425-436.
DuP, C. D., 1944, “Effects of Interaction Between Normal Shock and Boundary Layer.” NACA CB–4A27.
Dupont, P., Haddad, C., and Debiève, J. F., 2006, “Space and Time Organization in a Shock-Induced Separated Boundary Layer.” Journal of Fluid Mechanics, Vol.559, pp. 255-277. doi: 10.1017/s0022112006000267
Dussauge, J. P., Dupont, P., and Debiève, J. F., 2006, “Unsteadiness in Shock Wave Boundary Layer Interactions with Separation.” Aerospace Science and Technology, Vlo. 10, No. 2, pp. 85-91. doi: 10.1016/j.ast.2005.09.006
Dussauge, J. P., and Piponniau, S., 2008, “Shock/Boundary-Layer Interactions: Possible sources of unsteadiness.” Journal of Fluids and Structures, Vol. 24, No. 8, pp. 1166-1175. doi: 10.1016/j.jfluidstructs.2008.06.003
East, L. F., 1976, “The Application of a Laser Anemometer to the Investigation of Shock-Wave Boundary-Layer Interactions.” AGARD-CCP 193.
Edwards, J. R., 2008, “Numerical Simulations of Shock/Boundary Layer Interactions Using Time-Dependent Modeling Techniques: A Survey of Recent Results.” Progress in Aerospace Sciences, Vo. 44, No. 6, pp. 447-465. doi: 10.1016/j.paerosci.2008.06.004
Erengil, M. E., and Dolling, D. S., 1991a, “Correlation of Separation Shock Motion with Pressure-Fluctuations in the Incoming Boundary-Layer.” AIAA Journal, Vol. 29, No. 11, pp. 1868-1877. doi: 10.2514/3.10812
Erengil, M. E., and Dolling, D. S., 1991b, “Unsteady Wave Structure Near Separation in a Mach 5 Compression Ramp Interaction.” AIAA Journal, Vol. 29, No. 5, pp. 728-735. doi: 10.2514/3.10647
Erengil, M. E., and Dolling, D. S., 1993, “Effects of Sweepback on Unsteady Separation in Mach 5 Compression Ramp Interactions.” AIAA Journal, Vol. 31, No. 2, pp. 302-311. doi: 10.2514/3.60176
Erengil, M. E., 1993, “Physical Causes of Separation Shock Unsteadiness in Shock Wave/Turbulent Boundary Layer Interactions.” AIAA Paper 93-3134.
Ericsson, L. E., 1989, “Critique of Turbulence Models for Shock-Induced Flow Separation.” AIAA journal, Vol. 27, No. 11, pp. 1648-1650.
Fage, A., and Sargent, R. F., 1947, “Shock-Wave and Boundary-Layer Phenomena Near a Flat Surface.” Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, Vol. 190, pp. 1-20. doi: 10.1098/rspa.1947.0058,
Ferri, A., 1940, “Experimental Results with Airfoils Tested in the High-Speed Tunnel at Guidonia,” NACA TM 946, (translation).
Gaisbauer, U., Knauss, H., Wagner, S., Kharlamova, Y., and Fedorova, N., 2002, “Shock/Turbulent Boundary-Layer Interaction on a Double Ramp Configuration-Experiments and Computations.” Proceedings of XI International Conference on the Methods of Aerophysical Research, ICMAR, pp. 56-62.
Ganapathisubramani, B., Clemens, N. T., and Dolling, D. S., 2006, “Large-Scale Motions in a Supersonic Turbulent Boundary Layer.” Journal of Fluid Mechanics, Vol. 556, pp. 271-282. doi: 10.1017/S0022112006009244
Ganapathisubramani, B., Clemens, N. T., and Dolling, D. S., 2007, “Effects of Upstream Boundary Layer on the Unsteadiness of Shock-Induced Separation.” Journal of Fluid Mechanics, Vol. 585, pp. 369-394. doi: 10.1017/S0022112007006799
Ganapathisubramani, B., Clemens, N. T., and Dolling, D. S., 2009, “Low-Frequency Dynamics of Shock-Induced Separation in a Compression Ramp Interaction.” Journal of Fluid Mechanics, Vol. 636, pp. 397-425. doi: 10.1017/S0022112009007952
Gibson, B. T., and Dolling, D. S., 1991, “Wall Pressure Fluctuations Near Separation in a Mach 5, Sharp Fin-Induced Turbulent Interaction.” AIAA paper 91-0646.
Gibson, B. T., and Dolling, D. S., 1992, “Exploratory Study of Wall Pressure Fluctuations in a Mach 5, Sharp Fin-Induced Turbulent Interaction.” AIAA Journal, Vol. 30, No. 9, pp. 2188-2195. doi: 10.2514/3.11204
Gramann, R. A., and Dolling, D. S., 1990a, “Dynamics of Separation and Reattachment in a Mach 5 Unswept Compression Ramp Flow.” AIAA Paper 90-0380.
Gramann, R. A., and Dolling, D. S., 1990b, “Detection of Turbulent Boundary-Layer Separation Using Fluctuating Wall Pressure Signals.” AIAA Journal, Vlo. 28, No. 6, pp. 1052-1056. doi: 10.2514/3.25164
Hou, Y. X., 2003, “Particle Image Velocimetry Study of Shock-Induced Turbulent Boundary Layer Separation.” PhD thesis, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Texas, USA.
Hou, Y. X., Clemens, N. T., and Dolling, D. S., 2003, “Wide-Field PIV Study of Shock-Induced Turbulent Boundary Layer Separation. AIAA Paper 2003-0441.
Hutchins, N., and Marusic, I., 2007, “Evidence of Very Long Meandering Features in the Logarithmic Region of Turbulent Boundary Layers.” Journal of Fluid Mechanics, Vol. 579, pp. 1-28.
Inger, G.R., and Zee, S., 1978, “Transonic Shockwave/Turbulent-Boundary-Layer Interaction with Suction or Blowing,” Journal of Aircraft, Vol. 15, No. 11, pp. 750-754.
John, J E. A., 1969, Gas Dynamics, Allyn and Bacon, Boston, MA.
Kim, H. D., Matsuo, K., and Setoguchi, T., 1996, “Investigation on Onset of Shock-Induced Separation.” Shock Waves, Vol. 6, No. 5, pp. 275-286. doi: 10.1007/s001930050046
Kim, J., Kim, K., and Sung, H. J., 2003, “Wall Pressure Fluctuations in a Turbulent Boundary Layer After Blowing or Suction.” AIAA Journal, Vol. 41, No. 9, pp. 1697-1704.
Kim, K. C., and Adrian, R. J., 1999, “Very Large-Scale Motion in the Outer Layer.” Physics of Fluids, Vol. 11, No. 2, pp. 417-422. doi: 10.1063/1.869889
Kistler, A. L., 1964, “Fluctuating Wall Pressure Under a Separated Supersonic Flow.” Journal of the Acoustical Society of America, Vol. 36, No. 3, pp. 543-550.
Knight, D., Yan, H., Panaras, A. G., and Zheltovodov, A., 2003, “Advances in CFD Prediction of Shock Wave Turbulent Boundary Layer Interactions.” Progress in Aerospace Sciences, Vol. 39, No. 2, pp. 121-184.
Knight, D. D., and Degrez, G., 1998, “Shock Wave Boundary Layer Interactions in High Mach Number Flows: A Critical Survey of Current CFD Prediction Capabilities.” AGARD, AR-319.
Knight, D. D., Horstman, C. C., “Bogdonoff, S., and Shapey, B., 1987, “Structure of Supersonic Turbulent Flow Past a Sharp Fin.” AIAA journal, Vol. 25, No. 10, pp. 1331-1337. doi: 10.2514/3.9787
Kooi, J. W., 1980, “Influence of Free-Stream Mach Number on Transonic Shock-Wave Boundary-Layer Interaction.” NLR MP-78013 U.
Kuntz, D. W., Amatucci, V. A., and Addy, A. L., 1987, “Turbulent Boundary-Layer Properties Downstream of the Shock-Wave/Boundary-Layer Interaction.” AIAA Journal, Vol. 25, No. 5, pp. 668-675. doi: 10.2514/3.9681
Kussoy, M. I., Brown, J. D., Brown, J. L., Lockman, W. K., and Horstman, C. C., 1988, “Fluctuations and Massive Separation in Three-Dimensional Shock-Wave/Boundary-Layer Interactions.” Proceedings of the International Symposium on Transport Phenomena in Turbulent Flows, pp.875-887.
Laganelli, A. L., Martellucci, A., and Shaw, L. L., 1983, “Wall Pressure Fluctuations in Attached Boundary-Layer Flow.” AIAA Journal, Vol. 21, No. 4, pp. 495-502. doi: 10.2514/3.8105
Lagerstrom, P. A., 1975, “Solutions of the Navier-Stokes Equation at Large Reynolds Number.” SIAM Journal on Applied mathematics, Vol. 28, No. 1, pp. 202-214.
Law, C. H., 1974, “Supersonic, Turbulent Boundary-Layer Separation.” AIAA Journal, Vol. 12, No. 6, pp. 794-797.
Liepmann, H. W., 1946, “The Interaction Between Boundary Layer and Shock Waves in Transonic Flow.” Journal of the Aeronautical Sciences, Vol. 13, No. 12, pp. 623-637.
Lighthill, M. J., 1947, “The Hodograph Transfomation in Trans-Sonic Flow. I. Symmetricala Channels.” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 191, No. 1026, pp. 323-341.
Lin, C. Y., Crawley, E. F., and Heeg, J., 1996, “Open- and Closed-Loop Results of a Strain-Actuated Active Aeroelastic Wing.” Journal of Aircraft, Vol. 33, No. 5, pp. 987-994. doi: 10.2514/3.47045
Liu, X., and Squire, L. C., 1988, “An Investigation of Shock Boundary-Layer Interactions on Curved Surfaces at Transonic Speeds.” Journal of Fluid Mechanics, Vol. 187, pp. 467-486. doi: 10.1017/S0022112088000527
Lu, F. K., and Settles, G. S., 1991, “Upstream-Influence Scaling of Sharp Fin Interactions." AIAA journal, Vol. 29, No. 7, pp. 1180-1181. doi: 10.2514/3.10721
Martin, M. P., Priebe, S., and Wu, M., 2008, “Upstream and Downstream Influence on the Unsteadiness of STBLI Using DNS Data in Two Configurations.” AIAA Paper 2008-0719.
Mason, W. H., 1993, “Fundamental Issues in Subsonic/Transonic Expansion Corner Aerodynamics.” AIAA Paper 93-0649.
McClure, W. B., 1992, “An Experimental Study of the Driving Mechanism and Control of the Unsteady Shock Induced Turbulent Separation in a Mach 5 Compression Corner Flow.” PhD thesis, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Texas, USA.
Messiter, A. F., 1970, “Boundary-Layer Flow Near the Trailing Edge of a Flat Plate.” SIAM Journal on Applied Mathematics, Vol. 18, No. 1, pp. 241-257.
Messiter, A. F., 1979, “Boundary-Layer Separation.” Proceeding of the 8th US National Congress of Applied Mechanics, Los Angeles, California, USA. pp. 157-179.
Messiter, A. F., 1983, “Boundary-Layer Interaction Theory.” ASME Transactions, Series E: Journal of Applied Mechanics, Vol. 50, pp. 1104-1113.
Miau, J. J., Cheng, J., Chung, K. M., and Chou, J. F., 1998, “The Effect of Surface Roughness on the Boundary Layer Transition.” Proceeding of the 7 th International Symposium in Flow Modeling and Turbulent Measurement, Taiwan. pp. 609-616.
Muck, K. C., Andreopoulos, J., and Dussauge, J. P., 1988, “Unsteady Nature of Shock-Wave Turbulent Boundary-Layer Interaction.” AIAA Journal, Vol. 26, No. 2, pp. 179-187. doi: 10.2514/3.9870
Neiland, V. Y., 1969, “Theory of Laminar Boundary Layer Separation in Supersonic Flow.” Fluid Dynamics, Vol. 4, No. 4, pp. 33-35.
Neiland, V. Y., 1974, “Asymptotic Problems in the Theory of Viscous Supersonic Flows.” Tr. TsAGI, No. 1529.
Neiland, V. Y, 1981, “Asymptotic Theory of Boundary Layer Separation and Interaction with a Supersonic Gas Flow.” Usp. Mekh, Vol.4, No. 2, pp. 3-62.
Ogawa, H., and Babinsky, H., 2006, “Wind-Tunnel Setup for Investigations of Normal Shock Wave/Boundary Layer Interaction Control.” AIAA journal, Vol. 44, No. 11, pp. 2803-2805.
Ogawa, H., Babinsky, H., Pätzold, A., and Lutz, T., 2008, “Shock-Wave/Boundary-Layer Interaction Control Using Three-Dimensional Bumps for Transonic Wings.” AIAA Journal, Vol. 46, No. 6, pp. 1442-1452. doi: 10.2514/1.32049
Özcan, O., and Kaya, M. O., 1989, “Shock-Wave Boundary-Layer Interaction at a Swept Compression Corner.” AIAA Journal, Vol. 27, No. 11, pp. 1646-1648. doi: 10.2514/3.10314
Panaras, A. G., 1996, “Review of the Physics of Swept-Shock Boundary Layer Interactions.” Progress in Aerospace Sciences, Vol. 32, No. 2-3, pp. 173-244. doi: 10.1016/0376-0421(95)00005-4
Piponniau, S., Dussauge, J. P., Debiève, J. F., and Dupont, P., 2009, “A Simple Model for Low-Frequency Unsteadiness in Shock-Induced Separation.” Journal of Fluid Mechanics, Vol. 629, pp. 87-108. doi: 10.1017/S0022112009006417
Pirozzoli, S., and Grasso, F., 2006, “Direct Numerical Simulation of Impinging Shock Wave/Turbulent Boundary Layer Interaction at M=2.25.” Physics of Fluids, Vol. 18, No. 6, 065113. doi: 10.1063/1.2216989
Plotkin, K. J., 1975, “Shock-Wave Oscillation Driven by Turbulent Boundary-Layer Fluctuations.” AIAA Journal, Vol. 13, No. 8, pp. 1036-1040. doi: 10.2514/3.60501
Poggie, J., and Smits, A. J., 2005, “Experimental Evidence for Plotkin Model of Shock Unsteadiness in Separated Flow.” Physics of Fluids, Vol. 17, No. 1, 018107. doi: 10.1063/1.1833405
Ringuette, M., Wu, M., and Martin, M. P., 2008, “Low Reynolds Number Effects in a Mach 3 Shock/Turbulent-Boundary-Layer Interaction.” AIAA journal, Vol. 46, No. 7, pp. 1883-1886.
Ringuette, M. J., Wu, M., and Martin, M. P., 2008, “Coherent Structures in DNS of Turbulent Boundary Layers at Mach 3.” Journal of Fluid Mechanics, Vol. 594, pp. 59-69. doi: 10.1017/S0022112007009020
Robinet, J. C., 2007, “Bifurcations in Shock-Wave/Laminar-Boundary-Layer Interaction: Global Instability Approach.” Journal of Fluid Mechanics, Vol. 579, pp. 85-112. doi: 10.1017/S0022112007005095
Roshko, A., and Thomke, G. J., 1976, “Flare-Induced Interaction Lengths in Supersonic, Turbulent Boundary Layers.” AIAA Journal, Vol. 14, No. 7, pp. 873-879. doi: 10.2514/3.61429
Ruban, A. I., and Türkyilmaz, I., 2000, “On Laminar Separation at a Corner Point in Transonic Flow.” Journal of Fluid Mechanics, Vol. 423, pp. 345-380. doi: 10.1017/S002211200000207X
Ruban, A. I., Wu, X., and Pereira, R. M. S., 2006, “Viscous-Inviscid Interaction in Transonic Prandtl-Meyer Flow.” Journal of Fluid Mechanics, Vol. 568, pp. 387-424. doi: 10.1017/S0022112006002448
Samimy, M., Arnette, S. A., and Elliott, G. S., 1994, “Streamwise Structures in a Turbulent Supersonic Boundary Layer.” Physics of Fluids, Vol. 6, No. 3, 1081. doi: 10.1063/1.868279
Sartor, F., Losfeld, G., and Bur, R., 2012, “PIV Study on a Shock-Induced Separation in a Transonic Flow.” Experiments in Fluids, Vol. 53, No. 3, pp. 815-827. doi: 10.1007/s00348-012-1330-4
Schmisseur, J. D., and Dolling, D. S., 1992, “Unsteady Separation in Sharp Fin-Induced Shock Wave/Turbulent Boundary Layer Interaction at Mach 5.” AIAA Paper, 92-0748.
Seddon, J., 1960, “The Flow Produced by Interaction of a Turbulent Boundary Layer with a Normal Shock Wave of Strength Sufficient to Cause Separation.” ARC R&M, No. 3502.
Selig, M. S., Andreopoulos, J., Muck, K. C., Dussauge, J. P., and Smits, A. J., 1989, “Turbulence Structure in a Shock-Wave Turbulent Boundary-Layer Interaction. AIAA Journal, Vol. 27, No. 7, pp. 862-869. doi: 10.2514/3.10193
Settles, G. S., Horstman, C. C., and McKenzie, M., 1986, “Experimental and Computational Study of a Swept Compression Corner Interaction Flowfield.” AIAA journal, Vol. 24, No. 5, pp. 744-752. doi: 10.2514/3.9341
Settles, G. S., 1976, “An Experimental Study of Compressible Turbulent Boundary Layer Separation at High Reynolds Numbers.” PhD thesis, Aerospace and Mechanical Sciences Department, Princeton University, New Jersey, USA.
Settles, G. S., 1988, “Experimental Research on Swept Shock Wave/Boundary Layer Interactions.” Fluid Mechanics, AD-A196938
Settles, G. S., and Bogdonoff, S. M., 1982, “Scaling of Two-and Three-Dimensional Shock/Turbulent Boundary-Layer Interactions at Compression Corners.” AIAA Journal, Vol. 20, No. 6, pp. 782-789. doi: 10.2514/3.51135
Settles, G. S., Bogdonoff, S. M., and Vas, I. E., 1976, “Incipient Separation of a Supersonic Turbulent Boundary Layer at High Reynolds Numbers.” AIAA Journal, Vol. 14, No. 1, pp. 50-56. doi: 10.2514/3.61331
Settles, G. S., Fitzpatrick, T. J., and Bogdonoff, S. M., 1979, “Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow.” AIAA Journal, Vol. 17, No. 6, pp. 579-585. doi: 10.2514/3.61180
Settles, G. S., Perkins, J. J., and Bogdonoff, S. M., 1980, “Investigation of Three-Dimensional Shock/Boundary-Layer Interactions at Swept Compression Corners.” AIAA Journal, Vol. 18, No. 7, pp. 779-785. doi: 10.2514/3.50819
Smith, F. T., 1982, “On the High Reynolds Number Theory of Laminar Flows.” IMA Journal of Applied Mathematics, Vol. 28, No. 3., pp. 207-281. doi: 10.1093/imamat/28.3.207
Smits, A. J., Smith, D., Poggie, J., and Konrad, W., 1991, “Visualization of the Structure of Shock Wave Turbulent Boundary Layer Interactions Using Rayleigh Scattering.” AIAA Paper 91-0651
Smits, A. J., and Dussauge, J. P., 2006, Turbulent Shear Layers in Supersonic Flow, Springer, New York.
Smits, A. J., and Muck, K. C., 1987, “Experimental Study of Three Shock Wave/Turbulent Boundary Layer Interactions.” Journal of Fluid Mechanics, Vol. 182, pp. 291-314. doi: 10.1017/S0022112087002349
Stalker, R. J., 1960, “Sweepback Effects in Turbulent Boundary-Layer Shock-Wave Interaction.” Journal of the Aerospace Sciences, Vol. 27, No. 5, pp. 348-356. doi: 10.2514/8.8538
Stewartson, K., 1969, “On the Flow Near the Trailing Edge of a Flat Plate II.” Mathematika, Vol. 16, No. 1, pp. 106-121. doi: 10.1112/S0025579300004678
Stewartson, K., 1974, “Multistructured Boundary Layers on Flat Plates and Related Bodies.” Advanced in Applied Mechanics, Vol. 14, pp. 145-239.
Stewartson, K., 1981, “D'Alembert's Paradox.” SIAM Review, Vol. 23, No. 3, pp. 308-343. doi: 10.1137/1023063
Stewartson, K., and Williams, P. G., 1969, “Self-Induced Separation.” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 312, No. 1509, pp. 181-206. doi: 10.1098/rspa.1969.0148
Stratford, B. S., and Beavers, G. S., 1961, “The Calculation of the Compressible Turbulent Boundary Layer in an Arbitrary Pressure Gradient: A Correlation of Certain Previous Methods.” ARC R&M, No. 3207.
Sychev, V. V., Ruban, A. I., Sychev, V. V. and Korolev, G. L., 1998 Asymptotic theory of separated flows. Cambridge University Press.
Thomas, F. O., Putnam, C. M., and Chu, H. C., 1994, “On the Mechanism of Unsteady Shock Oscillation in Shock-Wave Turbulent Boundary-Layer Interactions.” Experiments in Fluids, Vol. 18, No. 1-2, pp. 69-81.
Touber, E., and Sandham, N. D., 2009a, “Comparison of Three Large-Eddy Simulations of Shock-Induced Turbulent Separation Bubbles.” Shock Waves, Vol. 19, No. 6, pp. 469-478. doi: 10.1007/s00193-009-0222-x
Touber, E., and Sandham, N. D., 2009b, Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble.” Theoretical and Computational Fluid Dynamics, Vol. 23, No. 2, pp. 79-107. doi: 10.1007/s00162-009-0103-z
Tran, T. T., 1987, “An Experimental Investigation of Unsteadiness in Swept Shock Wave/Turbulent Boundary Layer Interactions.” PhD thesis, Aerospace and Mechanical Sciences Department, Princeton University, New Jersey, USA.
Türkyilmaz, I., 2004, “An Investigation of Separation Near Corner Points in Transonic Flow.” Journal of Fluid Mechanics, Vol. 508, pp. 45-70. doi: 10.1017/s0022112004008754
Ünalmis, O. H., and Dolling, D. S., 1994, “Decay of Wall Pressure Field and Structure of a Mach 5 Adiabatic Turbulent Boundary Layer.” AIAA Paper, 94-2363.
Ünalmis, O. H., and Dolling, D. S., 1998, “Experimental Study of Causes of Unsteadiness of Shock-Induced Turbulent Separation.” AIAA Journal, Vol. 36, No. 3, pp. 371-378. doi: 10.2514/2.373
Van Dyke, M. D., 1964, Perturbation methods in fluid mechanics, Academic Press New York.
Van Dyke, M. D., 1951, “The Combined Supersonic-Hypersonic Similarity Rule.” Journal of the Aeronautical Sciences, Vol. 18, No. 7, pp. 499-500.
Verhoff, A., Stookesberry, D., and Michal, T., 1991, “Hodograph Solution for Compressible Flow Past a Corner and Comparison with Euler Numerical Predictions.” AIAA Paper, 1991-1547.
Wilkie, W. K., Belvin, W. K., and Park, K., 1996, “Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation.” ASME World Congress and Exposition, pp. 1-11.
Wollblad, C., Davidson, L., and Eriksson, L. E., 2006, “Large Eddy Simulation of Transonic Flow with Shock Wave/Turbulent Boundary Layer Interaction.” AIAA Journal, Vol. 44, No. 10, pp. 2340-2353. doi: 10.2514/1.20358
Wollblad, C., Davidson, L., and Eriksson, L. E., 2010, “Investigation of Large Scale Shock Movement in Transonic Flow.” International Journal of Heat and Fluid Flow, Vol. 31, No. 4, pp. 528-535. doi: 10.1016/j.ijheatfluidflow.2010.02.009
Wu, M., and Martin, M. P., 2007, “Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS data.” AIAA Paper, 2007-1136.
Wu, M. W., and Martin, M. P., 2008, “Analysis of Shock Motion in ShockWave and Turbulent Boundary Layer Interaction Using Direct Numerical Simulation Data.” Journal of Fluid Mechanics, Vol. 594, pp. 71-83. doi: 10.1017/S0022112007009044
Zukoski, E. E., 1967, “Turbulent Boundary-Layer Separation in Front of a Forward-Facing Step.” AIAA journal, Vol. 5, No. 10, pp. 1746-1753. doi: 10.2514/3.4299