簡易檢索 / 詳目顯示

研究生: 洪立穎
Hong, Li-Ying
論文名稱: 利用驅入擴散製作之單晶矽鍺運用於環繞式閘級奈米片通道P型金氧半場效電晶體
Manufacturing of GAA nanosheet pMOSFET from SiGeOI fabricated by drive-in technology
指導教授: 李文熙
Lee, Wen-Shi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 46
中文關鍵詞: 驅入單晶矽鍺環繞式閘極
外文關鍵詞: drive-in, single crystal, SiGe, Gate-all-around
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用擴散驅入原理開發一種新穎製成高鍺比例矽鍺之方法,達到磊晶不易沉積的高鍺比例之矽鍺單晶薄膜,並用於製作閘極全環式奈米片P型電晶體。
    擴散製程早期普遍用於IC生產中的半導體摻雜使用,先進的IC生產中實際已很少使用擴散摻雜製程,但我們可以利用擴散中分子的熱運動會使物質從濃度高移向濃度低區之特性,配合遮蓋層將矽與鍺結合成矽鍺薄膜。
    我們使用爐管的高溫長時退火製程,將濺鍍在SOI基板上的鍺原子驅入擴散進矽薄膜裡,經由改變各種條件,如溫度、時間和遮罩層等,再透過X射線光電子光譜儀、X射線繞射分析儀及穿透式電子顯微鏡觀察矽鍺薄膜之擴散情形、結晶狀況與應力分佈,發現使用氮化矽遮罩層在900oC下退火12小時,可得到單晶且擴散最為均勻之矽鍺薄膜,且鍺比例最高可達到70%左右。
    將驅入擴散製作之高鍺比例之SiGeOI基板應用於環繞式閘級奈米片通道P型金氧半場效電晶體上,由於單晶和鍺濃度的提升,我們得以提高P型元件之驅動電流。一般環繞式閘級矽鍺奈米片通道場效電晶體製程需將矽鍺薄膜磊晶在SOI基板上,再透過乾式和高選擇比濕式蝕刻將通道懸空,而我們可將單晶矽鍺直接沉積在二氧化矽上,這是磊晶做不到的,只將二氧化矽作為犧牲層,需要透過簡單的濕式蝕刻即可懸空奈米片通道,大大地降低了製程複雜度。

    In this study, we propose a new method to form a silicon germanium film in various ratios by drive-in diffusion, which can be applied to fabricate Gate-all-around nanosheet p-MOSFET. The result can achieve a single crystal silicon germanium film with high germanium proportion which cannot be easily deposited by epitaxy technology.
    In traditional, the diffusion process which was commonly used for semiconductor doping in IC fabrication. Recently, the diffusion doping process has rarely been used. Thanks for the thermal motion, we can form a silicon germanium film with the capping layer by mixing silicon and germanium via drive-in.
    The germanium atoms of the silicon germanium film which is sputtered on the silicon-on-insulator substrate drive in the silicon film by furnace process, and we tried various conditions, such as temperature, time, and capping layer. Through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Transmission electron microscope (TEM), we observed the diffusion distribution, crystallization state and stress distribution of the silicon germanium film. At last, we obtained the most homogeneous single crystal silicon germanium film that using the silicon nitride capping layer annealed at 900oC for 12 hours, and the proportion of germanium can reach up to about 70%.
    The SiGeOI with high germanium proportion by drive-in diffusion is applied to the Gate-all around nanosheet pMOSFET. Due to the single crystal and the increase of the germanium concentration, the drive current of the P-type transistors can be enhanced. In general, the processes of gate-all-around silicon germanium nanosheet channel field effect transistors require to epitaxy silicon germanium film on the SOI substrate, and then the channel is released by dry etching and high selective wet etching. We can fabricate single crystal silicon germanium directly deposited on silicon oxide, which cannot be achieved by epitaxy. Furthermore, the nanosheet channel, which only silicon oxide is used as the sacrificial layer, can be released by simple wet etching. It reduces the complexity of the process greatly.

    中文摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VII 圖目錄 1 第一章 緒論 4 1.1 前言 4 1.2 實驗動機 5 第二章 基礎理論與文獻回顧 6 2.1 矽鍺 6 2.2 多閘極電晶體 7 2.3 奈米片通道電晶體 9 2.4 擴散製程 10 第三章 實驗方法與分析 13 3.1 絕緣層上覆矽鍺基板 13 3.2 環繞式閘極矽鍺奈米片通道PMOSFET 16 第四章 實驗結果與討論 20 4.1 退火時間之影響 21 4.2 退火溫度之影響 26 4.3 矽/鍺沉積厚度比例之影響 31 4.4 覆蓋層之影響 34 4.5 應力分佈與結晶狀態 42 第五章 結論和未來研究方向 45 5.1 結論 45 5.2 未來研究方向 45 5.2.1 矽鍺薄膜 45 5.2.2 矽鍺/介電質介面 45 參考文獻 47

    [1] G. Moore, "Excerpts from a conversation with Gordon Moore: Moore's law," Intel Corporation document, vol. 1, 2005.
    [2] M. Yu et al., "A novel technique to fabricate 28 nm p-MOSFETs possessing gate oxide integrity on an embedded SiGe channel without silicon surface passivation," Journal of physics D: Applied physics, vol. 45, no. 49, p. 495102, 2012.
    [3] S. Verdonckt-Vandebroek et al., "SiGe-channel heterojunction p-MOSFET's," IEEE Transactions on Electron Devices, vol. 41, no. 1, pp. 90-101, 1994.
    [4] G. Nicholas et al., "High-performance deep submicron Ge pMOSFETs with halo implants," IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2503-2511, 2007.
    [5] S. Thompson et al., "A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1/spl mu/m/sup 2/SRAM cell," in Digest. International Electron Devices Meeting, 2002: IEEE, pp. 61-64.
    [6] M. Uchida, Y. Kamakura, and K. Taniguchi, "Performance enhancement of pMOSFETs depending on strain, channel direction, and material," in 2005 International Conference On Simulation of Semiconductor Processes and Devices, 2005: IEEE, pp. 315-318.
    [7] H. M. Nayfeh et al., "Hole transport in nanoscale p-type MOSFET SOI devices with high strain," in Proc. Device Res. Conf, 2007, pp. 51-52.
    [8] S. Verdonckt-Vandebroek et al., "High-mobility modulation-doped SiGe-channel p-MOSFETs," IEEE electron device letters, vol. 12, no. 8, pp. 447-449, 1991.
    [9] T. Krishnamohan, Z. Krivokapic, K. Uchida, Y. Nishi, and K. C. Saraswat, "Low defect ultra-thin fully strained-Ge MOSFET on relaxed Si with high mobility and low band-to-band-tunneling (BTBT)," in Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005., 2005: IEEE, pp. 82-83.
    [10] D. Buca, S. Winnerl, S. Lenk, C. Buchal, and D.-X. Xu, "Fast time response from Si–SiGe undulating layer superlattices," Applied physics letters, vol. 80, no. 22, pp. 4172-4174, 2002.
    [11] P. Rauter, G. Mussler, D. Grützmacher, and T. Fromherz, "Tensile strained SiGe quantum well infrared photodetectors based on a light-hole ground state," Applied physics letters, vol. 98, no. 21, p. 211106, 2011.
    [12] M. De Marchi et al., "Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs," in 2012 International Electron Devices Meeting, 2012: IEEE, pp. 8.4. 1-8.4. 4.
    [13] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, "Scaling theory for double-gate SOI MOSFET's," IEEE Transactions on Electron Devices, vol. 40, no. 12, pp. 2326-2329, 1993.
    [14] B. Doyle et al., "High performance fully-depleted tri-gate CMOS transistors," IEEE Electron Device Letters, vol. 24, no. 4, pp. 263-265, 2003.
    [15] N. Singh et al., "High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices," IEEE Electron Device Letters, vol. 27, no. 5, pp. 383-386, 2006.
    [16] S. Bangsaruntip et al., "High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling," in 2009 IEEE International Electron Devices Meeting (IEDM), 2009: IEEE, pp. 1-4.
    [17] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017: IEEE, pp. T230-T231.
    [18] A. Veloso et al., "Nanowire & nanosheet FETs for ultra-scaled, high-density logic and memory applications," Solid-State Electronics, vol. 168, p. 107736, 2020.
    [19] M. A. Guillorn, I. Lauer, and N. J. Loubet, "Co-integration of silicon and silicon-germanium channels for nanosheet devices," ed: Google Patents, 2017.
    [20] J. w. Seo et al., "Two‐dimensional nanosheet crystals," Angewandte Chemie International Edition, vol. 46, no. 46, pp. 8828-8831, 2007.
    [21] J. Hartmann, A. Papon, J. Barnes, and T. Billon, "Growth kinetics of SiGe/Si superlattices on bulk and silicon-on-insulator substrates for multi-channel devices," Journal of crystal growth, vol. 311, no. 11, pp. 3152-3157, 2009.
    [22] P. Ye, T. Ernst, and M. V. Khare, "The last silicon transistor: Nanosheet devices could be the final evolutionary step for Moore's Law," IEEE Spectrum, vol. 56, no. 8, pp. 30-35, 2019.
    [23] R. Behrisch and W. Eckstein, Sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies. Springer Science & Business Media, 2007.
    [24] R. F. Bunshah, Handbook of deposition technologies for films and coatings: science, technology, and applications. William Andrew, 1994.
    [25] T. Chao, Introduction to semiconductor manufacturing technology. SPIE PRESS, 2001.
    [26] M. Werner, H. Mehrer, and H. Hochheimer, "Effect of hydrostatic pressure, temperature, and doping on self-diffusion in germanium," Physical Review B, vol. 32, no. 6, p. 3930, 1985.
    [27] N. Zangenberg, J. L. Hansen, J. Fage-Pedersen, and A. N. Larsen, "Ge self-diffusion in epitaxial Si 1− x Ge x layers," Physical Review Letters, vol. 87, no. 12, p. 125901, 2001.
    [28] Y. Jiang et al., "Ge-rich (70%) SiGe nanowire MOSFET fabricated using pattern-dependent Ge-condensation technique," IEEE electron device letters, vol. 29, no. 6, pp. 595-598, 2008.
    [29] S. W. Jones, "Diffusion in silicon," IC Knowledge LLC, pp. 23-61, 2008.
    [30] A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. McPhail, and R. Hung, "Implantation and diffusion of phosphorous in germanium," Materials science in semiconductor processing, vol. 9, no. 4-5, pp. 640-643, 2006.
    [31] C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, "Ge/GeO2 interface control with high pressure oxidation for improving electrical characteristics," ECS Transactions, vol. 19, no. 1, p. 165, 2009.
    [32] C. H. Poon, A. See, Y. Tan, M. Zhou, and D. Gui, "Effect of germanium preamorphization implant on boron deactivation in silicon following multiple-pulse flash annealing," Electrochemical and Solid State Letters, vol. 10, no. 12, p. H362, 2007.
    [33] C. Lee et al., "A comparative study of strain and Ge content in Si 1− x Ge x channel using planar FETs, FinFETs, and strained relaxed buffer layer FinFETs," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 37.2. 1-37.2. 4.

    下載圖示 校內:2025-08-28公開
    校外:2025-08-28公開
    QR CODE