簡易檢索 / 詳目顯示

研究生: 陳采愉
Chen, Tsai-Yu
論文名稱: 以物聯網協助新式外骨骼機器人輔助治療改善慢性中風患者的上肢動作功能
A Novel Internet-of-Things-Assisted Exoskeleton Robot-Assisted Therapy for Improving Upper Limb Motor Functions in Chronic Stroke
指導教授: 郭立杰
Kuo, Li-Chieh
學位類別: 碩士
Master
系所名稱: 醫學院 - 職能治療學系
Department of Occupational Therapy
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 93
中文關鍵詞: 中風機器輔助治療遠距復健上肢動作功能
外文關鍵詞: stroke, robot-assisted therapy, tele-rehabilitation, upper limb motor function
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性中風患者常面臨上肢動作損傷的問題,且大部分病人在手腕會出現痙攣或不正常的肌肉張力,導致上肢的功能性使用能力受限、生活品質下降。為了解決此議題,近年來,機器輔助治療已融入中風動作復健,以求更精準的介入與訓練成效,其中外骨骼機器人為一種常用於機器輔助治療的設備。除了將機器輔助技術運用到中風復健,還有遠距復健的策略可將治療情境延伸到病人家中;此外,物聯網的技術能協助治療師監督遠距復健時可以更有效率。
    本研究將使用物聯網輔助的肌腱固定式外骨骼機器人(IoT-assisted tenodesis-induced-grip exoskeleton robot, TIGER),此設備融合機器輔助治療、遠距復健與物聯網於慢性中風復健,可提供連續關節被動動作、功能性動作訓練以抑制肌肉痙攣。本研究目的為評估TIGER機器人作為居家復健計畫的可行性與可用性,比較接受TIGER機器人訓練的TIGER組,以及接受傳統任務導向介入(task-oriented training, TOT)組別的介入成效。中風病人被分派到TIGER組與TOT組,介入時程皆為在家中進行每次30分鐘、一天2次、一周5天,持續4周的訓練。針對上肢動作損傷的主要成效評估工具為傅格梅爾評估量表,針對動作損傷的次要療效指標為改良式Tardieu量表、患側手腕的主動關節活動度、箱子與木塊測驗以及Semmes-Weinstein單絲測驗;上肢功能性使用以動作活動日誌作評估;可用性以系統易用性量表進行評估。動作損傷與功能性使用的成效使用廣義估計方程式分析,每周關節活動度的變化使用Friedman檢驗,使用性的結果將以描述性統計作呈現。
    二十五位受試者完成介入,其中13位被分派到TIGER組,另外12位被分派到TOT組。在傅格梅爾評估量表與動作活動日誌可觀察到兩組各自的組內顯著差異,在改良式Tardieu量表可觀察到組間顯著差異。在TIGER組的張力變化中,大部分受試者在整體介入過程中呈現出張力下降的趨勢,在單次TIGER訓練結束後所有受試者的手腕張力也有降低,在TIGER使用性的平均分數為達到68%的標準值。
    本研究的結果驗證了透過務聯網收集到數據分析受試者在家中進行TIGER訓練後,手腕張力所產生的變化的可行性,並指出在居家訓練情境中,TIGER訓練在動作功能損傷、手腕張力程度、手腕關節活動角度以及整體功能性表現的療效優於傳統任務導向訓練,但TIGER機器手臂仍需減少設備重量,以減輕中風患者使用後肩膀出現疲勞的狀況。未來研究須納入更多樣本數,並探索出最合適的TIGER訓練劑量以強化其療效。

    Individuals with chronic stroke often experience motor impairments in their upper limbs. Many of these individuals exhibit spasticity or abnormal muscle tone in the wrist and hand, limiting the functional use of the upper limb and negatively impacting their quality of life. To deal with this issue, robot-assisted therapy (RAT) has recently been proposed to integrate into stroke motor rehabilitation for achieving more precise intervention and training effects. Exoskeleton robot is one of common robotic devices for the RAT. In addition to the robotic technology for stroke rehabilitation, tele-rehabilitation has emerged as a key strategy for extending treatment from hospital to home. Advances in Internet-of-Things (IoT) technology further support this approach by enabling therapists to monitor tele-rehabilitation more effectively. This study thus utilized an IoT-assisted tenodesis-induced-grip exoskeleton robot (TIGER) system. The TIGER system integrates RAT, tele-rehabilitation and IoT into a chronic stroke rehabilitation protocol designed to reduce spasticity through continuous passive range of motion and functional training.
    This study aimed to evaluate the feasibility and usability of the IoT-based TIGER system as a home training program for individuals with chronic stroke. Additionally, it attempted to compare the training effectiveness between participants using the IoT-based TIGER system (TIGER group) and those undergoing traditional task-oriented training (TOT group). Patients with chronic stroke were recruited and then allocated into the TIGER group and TOT group. Intervention duration in both groups was 30-minute, twice a day, 5 days a week for 4 weeks at their home. The primary outcome measurement for motor impairment was Fugl-Meyer upper extremity motor assessment (FMA-UE). The secondary outcome measurements for motor impairment were the Modified Tardieu scale (MTS), active range of motion (AROM) of affected wrist, box and block test (BBT), and Semmes-Weinstein monofilament (SWM) test. Assessment for functional use was the motor activity log (MAL). The assessment for usability was the system usability scale (SUS). For the statistical analysis, generalized estimating equations analysis was used to analyze the factors influencing motor impairment and functional use. Weekly AROM data were analyzed using the Friedman test. The usability results was presented using descriptive statistics.
    Twenty-five participants completed the intervention: thirteen in the TIGER group and twelve in the TOT group. Significant within-group differences were found in FMA-UE and MAL for both groups. A significant between-group difference was found in MTS. Regarding spasticity changes in the TIGER group, most participants exhibited a reduction in wrist spasticity throughout the training, and all participants showed a decrease in spasticity after just one training session. The usability of the TIGER system did not meet the 68% threshold.
    The findings of this study indicate that it is feasible to quantify the change of wrist spasticity via the IoT in the TIGER training. The therapeutic effect of motor impairment, wrist spasticity, range of motion of wrist, and functional performance in TIGER training is superior to that of task-oriented training in a home-based setting. However, the TIGER robot needs to reduce its gravitational impact to alleviate shoulder fatigue in patients with stroke. The study should also increase the sample size and determine the optimal dosage of TIGER training to enhance its effectiveness in future studies.

    Chapter 1 General Introduction 1 1.1 Research motivation and importance 1 1.2 Research purpose 4 1.3 Research hypotheses 5 Chapter 2 Literature Review 6 2.1 Introduction of traditional stroke intervention 6 2.1.1 The overview of stroke 6 2.1.2 Barriers in face-to-face stroke rehabilitation 8 2.1.3 Home programs for stroke rehabilitation 10 2.2 Introduction of robot-assisted therapy (RAT) 12 2.2.1 Basic concepts of RAT 12 2.1.2 Application of RAT in stroke rehabilitation 13 2.1.3 Limitations in RAT 15 2.3 Introduction of tele-rehabilitation 16 2.3.1 Characteristics of tele-rehabilitation 16 2.3.2 Application of tele-rehabilitation in stroke rehabilitation 18 2.3.3 Limitations in tele-rehabilitation 19 2.4 Introduction of Internet-of-Things (IoT) 20 2.4.1 Characteristics of IoT 20 2.5 Summary 21 Chapter 3 Methods 22 3.1    Introduction of the IoT-assisted tenodesis-induced-grip exoskeleton robot (TIGER) system 22 3.1.1 Apparatus 22 3.1.2 Define the parameters for initial setting 24 3.1.3 Define the parameters for training data record 26 3.2 Evaluation of effectiveness between the TIGER system and TOT as home program 28 3.2.1 Participants 28 3.2.2 Procedures 29 3.2.3 Primary Outcome Measurement 31 3.2.4 Secondary Outcome Measurements for motor impairments 32 3.2.5 Secondary Outcome Measurement for Functional Use 36 3.2.6 Secondary Outcome Measurement for Usability 37 3.2.7 Data Analysis 39 Chapter 4 Results 40 3.1 The demographic data of participants 40 3.2 Clinical outcomes between TIGER group and TOT group 42 3.3 Usability in the TIGER group 47 3.3.1 Torque Change in training sessions 47 3.3.2 Spasticity change in overall training 48 3.3.3 Spasticity change in everyday training 50 3.3.4 User satisfaction 52 3.4 The relationship between demographic data and range of motion as well as spasticity change in TIGER group 54 3.5 The relationship between clinical outcomes and range of motion as well as spasticity change in TIGER group 56 3.6 The relationship between range of motion and spasticity change in TIGER group 58 Chapter 5 Discussion 60 5.1 Feasibility of the TIGER system as home program 61 5.2 Usability of the TIGER system as home program 64 5.3 Study limitations and future research directions 69 Chapter 6 Conclusion 70 Appendix 71 Appendix 1 The setting for every participant in TIGER group 71 References 73

    Alsubiheen, A. M., Choi, W., Yu, W., & Lee, H. (2022). The Effect of Task-Oriented Activities Training on Upper-Limb Function, Daily Activities, and Quality of Life in Chronic Stroke Patients: A Randomized Controlled Trial. Int J Environ Res Public Health, 19(21). https://doi.org/10.3390/ijerph192114125
    Appleby, E., Gill, S. T., Hayes, L. K., Walker, T. L., Walsh, M., & Kumar, S. (2019). Effectiveness of telerehabilitation in the management of adults with stroke: A systematic review. PLoS One, 14(11), e0225150. https://doi.org/10.1371/journal.pone.0225150
    Bertani, R., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci, 38(9), 1561-1569. https://doi.org/10.1007/s10072-017-2995-5
    Bohannon, R. W. (2007). Muscle strength and muscle training after stroke. J Rehabil Med, 39(1), 14-20. https://doi.org/10.2340/16501977-0018
    Bok, S. K., Song, Y., Lim, A., Jin, S., Kim, N., & Ko, G. (2023). High-Tech Home-Based Rehabilitation after Stroke: A Systematic Review and Meta-Analysis. J Clin Med, 12(7). https://doi.org/10.3390/jcm12072668
    Bondoc, S., Booth, J., Budde, G., Caruso, K., DeSousa, M., Earl, B., Hammerton, K., & Humphreys, J. (2018). Mirror Therapy and Task-Oriented Training for People With a Paretic Upper Extremity. Am J Occup Ther, 72(2), 7202205080p7202205081-7202205080p7202205088. https://doi.org/10.5014/ajot.2018.025064
    Brokaw, E. B., Nichols, D., Holley, R. J., & Lum, P. S. (2014). Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil Neural Repair, 28(4), 367-376. https://doi.org/10.1177/1545968313510974
    Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Eval. Ind., 189.
    Chen, H. M., Chen, C. C., Hsueh, I. P., Huang, S. L., & Hsieh, C. L. (2009). Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair, 23(5), 435-440. https://doi.org/10.1177/1545968308331146
    Chen, J., Sun, D., Zhang, S., Shi, Y., Qiao, F., Zhou, Y., Liu, J., & Ren, C. (2020). Effects of home-based telerehabilitation in patients with stroke: A randomized controlled trial. Neurology, 95(17), e2318-e2330. https://doi.org/10.1212/wnl.0000000000010821
    Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., & Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. Int J Med Inform, 123, 11-22. https://doi.org/10.1016/j.ijmedinf.2018.12.001
    Chen, Y., Chen, Y., Zheng, K., Dodakian, L., See, J., Zhou, R., Chiu, N., Augsburger, R., McKenzie, A., & Cramer, S. C. (2020). A qualitative study on user acceptance of a home-based stroke telerehabilitation system. Top Stroke Rehabil, 27(2), 81-92. https://doi.org/10.1080/10749357.2019.1683792
    Chen, Z.-J., He, C., Guo, F., Xiong, C.-H., & Huang, X.-L. (2021). Exoskeleton-Assisted Anthropomorphic Movement Training (EAMT) for Poststroke Upper Limb Rehabilitation: A Pilot Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 102(11), 2074-2082. https://doi.org/https://doi.org/10.1016/j.apmr.2021.06.001
    Costa, V., Ramírez, Ó., Otero, A., Muñoz-García, D., Uribarri, S., & Raya, R. (2020). Validity and reliability of inertial sensors for elbow and wrist range of motion assessment. PeerJ, 8, e9687. https://doi.org/10.7717/peerj.9687
    Coupar, F., Pollock, A., Legg, L. A., Sackley, C., & van Vliet, P. (2012). Home-based therapy programmes for upper limb functional recovery following stroke. Cochrane Database Syst Rev, 2012(5), Cd006755. https://doi.org/10.1002/14651858.CD006755.pub2
    Ding, K., Zhang, B., Ling, Z., Chen, J., Guo, L., Xiong, D., & Wang, J. (2022). Quantitative Evaluation System of Wrist Motor Function for Stroke Patients Based on Force Feedback. Sensors (Basel), 22(9). https://doi.org/10.3390/s22093368
    Diserens, K., Perret, N., Chatelain, S., Bashir, S., Ruegg, D., Vuadens, P., & Vingerhoets, F. (2007). The effect of repetitive arm cycling on post stroke spasticity and motor control: repetitive arm cycling and spasticity. J Neurol Sci, 253(1-2), 18-24. https://doi.org/10.1016/j.jns.2006.10.021
    Doussoulin, A., Rivas, C., Bacco, J., Sepúlveda, P., Carvallo, G., Gajardo, C., Soto, A., & Rivas, R. (2020). Prevalence of Spasticity and Postural Patterns in the Upper Extremity Post Stroke. J Stroke Cerebrovasc Dis, 29(11), 105253. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105253
    Duncan, P. W., & Bernhardt, J. (2021). Telerehabilitation: Has Its Time Come? Stroke, 52(8), 2694-2696. https://doi.org/doi:10.1161/STROKEAHA.121.033289
    Ellis, M. D., Sukal-Moulton, T., & Dewald, J. P. (2009). Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair, 23(8), 862-869. https://doi.org/10.1177/1545968309332927
    Ellis, M. D., Sukal, T., DeMott, T., & Dewald, J. P. (2008). Augmenting clinical evaluation of hemiparetic arm movement with a laboratory-based quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair, 22(4), 321-329. https://doi.org/10.1177/1545968307313509
    Frisoli, A., Barsotti, M., Sotgiu, E., Lamola, G., Procopio, C., & Chisari, C. (2022). A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke. J Neuroeng Rehabil, 19(1), 14. https://doi.org/10.1186/s12984-022-00991-y
    Fu, H.-J., Sheu, F.-R., & Shih, M.-L. (2017). Pre-Testing the Chinese Version of the System Usability Scale (C-SUS).
    Gasperina, S. D., Longatelli, V., Panzenbeck, M., Luciani, B., Morosini, A., Piantoni, A., Tropea, P., Braghin, F., Pedrocchi, A., & Gandolla, M. (2022, 25-29 July 2022). AGREE: an upper-limb robotic platform for personalized rehabilitation, concept and clinical study design. 2022 International Conference on Rehabilitation Robotics (ICORR),
    Germanotta, M., Gower, V., Papadopoulou, D., Cruciani, A., Pecchioli, C., Mosca, R., Speranza, G., Falsini, C., Cecchi, F., Vannetti, F., Montesano, A., Galeri, S., Gramatica, F., & Aprile, I. (2020). Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. J Neuroeng Rehabil, 17(1), 1. https://doi.org/10.1186/s12984-019-0634-5
    Gradim, L. C. C., José, M. A., Cruz, D. M. C. d., & Lopes, R. d. D. (2020). IoT Services and Applications in Rehabilitation: An Interdisciplinary and Meta-Analysis Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(9), 2043-2052. https://doi.org/10.1109/TNSRE.2020.3005616
    Guillén-Climent, S., Garzo, A., Muñoz-Alcaraz, M. N., Casado-Adam, P., Arcas-Ruiz-Ruano, J., Mejías-Ruiz, M., & Mayordomo-Riera, F. J. (2021). A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting. J Neuroeng Rehabil, 18(1), 41. https://doi.org/10.1186/s12984-021-00837-z
    Guo, X., Wallace, R., Tan, Y., Oetomo, D., Klaic, M., & Crocher, V. (2022). Technology-assisted assessment of spasticity: a systematic review. J Neuroeng Rehabil, 19(1), 138. https://doi.org/10.1186/s12984-022-01115-2
    Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair, 23(5), 505-514. https://doi.org/10.1177/1545968308331148
    Hsieh, Y. W., Lin, K. C., Wu, C. Y., Shih, T. Y., Li, M. W., & Chen, C. L. (2018). Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial. Sci Rep, 8(1), 2091. https://doi.org/10.1038/s41598-018-20330-3
    Hsu, H. Y., Chiu, H. Y., Kuan, T. S., Tsai, C. L., Su, F. C., & Kuo, L. C. (2019). Robotic-assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: A randomised controlled trial. Aust Occup Ther J, 66(5), 637-647. https://doi.org/10.1111/1440-1630.12602
    Hsu, H. Y., Kuo, L. C., Kuan, T. S., Yang, H. C., Su, F. C., Chiu, H. Y., & Shieh, S. J. (2017). Determining the functional sensibility of the hand in patients with peripheral nerve repair: Feasibility of using a novel manual tactile test for monitoring the progression of nerve regeneration. J Hand Ther, 30(1), 65-73. https://doi.org/10.1016/j.jht.2016.03.004
    Hsu, H. Y., Yang, K. C., Yeh, C. H., Lin, Y. C., Lin, K. R., Su, F. C., & Kuo, L. C. (2022). A Tenodesis-Induced-Grip exoskeleton robot (TIGER) for assisting upper extremity functions in stroke patients: a randomized control study. Disabil Rehabil, 44(23), 7078-7086. https://doi.org/10.1080/09638288.2021.1980915
    Hubbard, I. J., Parsons, M. W., Neilson, C., & Carey, L. M. (2009). Task-specific training: evidence for and translation to clinical practice. Occupational Therapy International, 16(3-4), 175-189. https://doi.org/https://doi.org/10.1002/oti.275
    Hussain, M., Fatima, A., Ahmad, A., & Gilani, S. A. (2022). Effects of task oriented rehabilitation of upper extremity after stroke: A systematic review. J Pak Med Assoc, 72(7), 1406-1415. https://doi.org/10.47391/jpma.3864
    Hyakutake, K., Morishita, T., Saita, K., Fukuda, H., Shiota, E., Higaki, Y., Inoue, T., & Uehara, Y. (2019). Effects of Home-Based Robotic Therapy Involving the Single-Joint Hybrid Assistive Limb Robotic Suit in the Chronic Phase of Stroke: A Pilot Study. Biomed Res Int, 2019, 5462694. https://doi.org/10.1155/2019/5462694
    Iwamoto, Y., Imura, T., Suzukawa, T., Fukuyama, H., Ishii, T., Taki, S., Imada, N., Shibukawa, M., Inagawa, T., Araki, H., & Araki, O. (2019). Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients. J Stroke Cerebrovasc Dis, 28(7), 2018-2025. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.006
    Kim, T. S., Park, D. D. H., Lee, Y. B., Han, D. G., Shim, J. s., Lee, Y. J., & Kim, P. C. W. (2014). A Study on the Measurement of Wrist Motion Range Using the iPhone 4 Gyroscope Application. Annals of Plastic Surgery, 73(2), 215-218. https://doi.org/10.1097/SAP.0b013e31826eabfe
    Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., Felder, M., Fellinghauer, B., Guidali, M., Kollmar, A., Luft, A., Nef, T., Schuster-Amft, C., Stahel, W., & Riener, R. (2014). Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol, 13(2), 159-166. https://doi.org/10.1016/s1474-4422(13)70305-3
    Knepley, K. D., Mao, J. Z., Wieczorek, P., Okoye, F. O., Jain, A. P., & Harel, N. Y. (2021). Impact of Telerehabilitation for Stroke-Related Deficits. Telemed J E Health, 27(3), 239-246. https://doi.org/10.1089/tmj.2020.0019
    Kuo, C.-L., & Hu, G.-C. (2018). Post-stroke Spasticity: A Review of Epidemiology, Pathophysiology, and Treatments. International Journal of Gerontology, 12(4), 280-284. https://doi.org/https://doi.org/10.1016/j.ijge.2018.05.005
    Kuo, L.-C., Yang, K.-C., Lin, Y.-C., Lin, Y.-C., Yeh, C.-H., Su, F.-C., & Hsu, H.-Y. (2022). Internet-of-Things (IoT) Enables Robot-assisted Therapy as a Home Program for Training Upper Limb Functions in Chronic Stroke: A Randomized Control Crossover Study: IoT robot therapy for stroke. Archives of Physical Medicine and Rehabilitation. https://doi.org/https://doi.org/10.1016/j.apmr.2022.08.976
    Kwakkel, G., Kollen, B., & Lindeman, E. (2004). Understanding the pattern of functional recovery after stroke: Facts and theories. Restorative Neurology and Neuroscience, 22, 281-299.
    Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778), 1693-1702. https://doi.org/10.1016/S0140-6736(11)60325-5
    Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol, 8(8), 741-754. https://doi.org/10.1016/s1474-4422(09)70150-4
    Lewis, J. R., & Sauro, J. (2009, 2009//). The Factor Structure of the System Usability Scale. Human Centered Design, Berlin, Heidelberg.
    Lin, K. C., Chen, Y. T., Huang, P. C., Wu, C. Y., Huang, W. L., Yang, H. W., Lai, H. T., & Lu, H. J. (2014). Effect of mirror therapy combined with somatosensory stimulation on motor recovery and daily function in stroke patients: A pilot study. J Formos Med Assoc, 113(7), 422-428. https://doi.org/10.1016/j.jfma.2012.08.008
    Lin, S., Mann, J., Mansfield, A., Wang, R. H., Harris, J. E., & Taati, B. (2019). Investigating the feasibility and acceptability of real-time visual feedback in reducing compensatory motions during self-administered stroke rehabilitation exercises: A pilot study with chronic stroke survivors. J Rehabil Assist Technol Eng, 6, 2055668319831631. https://doi.org/10.1177/2055668319831631
    Lundquist, C. B., & Maribo, T. (2017). The Fugl–Meyer assessment of the upper extremity: reliability, responsiveness and validity of the Danish version. Disability and Rehabilitation, 39(9), 934-939. https://doi.org/10.3109/09638288.2016.1163422
    Maier, M., Ballester, B. R., & Verschure, P. (2019). Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci, 13, 74. https://doi.org/10.3389/fnsys.2019.00074
    Mateo, S., Di Rienzo, F., Reilly, K. T., Revol, P., Delpuech, C., Daligault, S., Guillot, A., Jacquin-Courtois, S., Luauté, J., Rossetti, Y., Collet, C., & Rode, G. (2015). Improvement of grasping after motor imagery in C6-C7 tetraplegia: A kinematic and MEG pilot study. Restor Neurol Neurosci, 33(4), 543-555. https://doi.org/10.3233/rnn-140466
    McMorland, A. J., Runnalls, K. D., & Byblow, W. D. (2015). A neuroanatomical framework for upper limb synergies after stroke. Front Hum Neurosci, 9, 82. https://doi.org/10.3389/fnhum.2015.00082
    Mehrholz, J., Wagner, K., Meissner, D., Grundmann, K., Zange, C., Koch, R., & Pohl, M. (2005). Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult patients with severe brain injury: a comparison study. Clin Rehabil, 19(7), 751-759. https://doi.org/10.1191/0269215505cr889oa
    Molteni, F., Gasperini, G., Cannaviello, G., & Guanziroli, E. (2018). Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. Pm r, 10(9 Suppl 2), S174-s188. https://doi.org/10.1016/j.pmrj.2018.06.005
    Morris, S. L., & Williams, G. (2018). A historical review of the evolution of the Tardieu Scale. Brain Injury, 32(5), 665-669. https://doi.org/10.1080/02699052.2018.1432890
    Pan, H., Ng, S. S. M., Liu, T. W., Tsoh, J., & Wong, T. W. L. (2023). Psychometric properties of the Chinese (Cantonese) version of the Upper Extremity Functional Index in people with chronic stroke. Front Neurol, 14, 989403. https://doi.org/10.3389/fneur.2023.989403
    Peres, S., Pham, T., & Phillips, R. (2013). Validation of the System Usability Scale (SUS). Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57, 192-196. https://doi.org/10.1177/1541931213571043
    Piscitelli, D., Baniña, M. C., Lam, T. K., Chen, J. L., & Levin, M. F. (2023). Psychometric Properties of a New Measure of Upper Limb Performance in Post-Stroke Individuals: Trunk-Based Index of Performance. Neurorehabil Neural Repair, 37(1), 66-75. https://doi.org/10.1177/15459683221143462
    Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., & van Wijck, F. (2014). Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev, 2014(11), Cd010820. https://doi.org/10.1002/14651858.CD010820.pub2
    Pripotnev, S., Bruce, J., Novak, C. B., Kennedy, C. R., & Fox, I. K. (2023). Quantifying Tenodesis Hand Function in Cervical Spinal Cord Injury: Implications for Function. J Hand Surg Am, 48(7), 700-710. https://doi.org/10.1016/j.jhsa.2023.04.004
    Qian, Q., Nam, C., Guo, Z., Huang, Y., Hu, X., Ng, S. C., Zheng, Y., & Poon, W. (2019). Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. J Neuroeng Rehabil, 16(1), 64. https://doi.org/10.1186/s12984-019-0537-5
    Qu, Q., Lin, Y., He, Z., Fu, J., Zou, F., Jiang, Z., Guo, F., & Jia, J. (2021). The Effect of Applying Robot-Assisted Task-Oriented Training Using Human-Robot Collaborative Interaction Force Control Technology on Upper Limb Function in Stroke Patients: Preliminary Findings. Biomed Res Int, 2021, 9916492. https://doi.org/10.1155/2021/9916492
    Razfar, N., Kashef, R., & Mohammadi, F. (2021, 20-22 Dec. 2021). A Comprehensive Overview on IoT-Based Smart Stroke Rehabilitation Using the Advances of Wearable Technology. 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
    Rowe, V. T., & Neville, M. (2017). Task Oriented Training and Evaluation at Home. OTJR: Occupational Therapy Journal of Research, 38(1), 46-55. https://doi.org/10.1177/1539449217727120
    Runnalls, K. D., Ortega-Auriol, P., McMorland, A. J. C., Anson, G., & Byblow, W. D. (2019). Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Exp Brain Res, 237(12), 3391-3408. https://doi.org/10.1007/s00221-019-05687-9
    Sandison, M., Phan, K., Casas, R., Nguyen, L., Lum, M., Pergami-Peries, M., & Lum, P. S. (2020). HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 4867-4872. https://doi.org/10.1109/embc44109.2020.9175332
    Sarfo, F. S., Ulasavets, U., Opare-Sem, O. K., & Ovbiagele, B. (2018). Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature. J Stroke Cerebrovasc Dis, 27(9), 2306-2318. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.013
    Shu, X., McConaghy, C., & Knight, A. (2021). Validity and reliability of the Modified Tardieu Scale as a spasticity outcome measure of the upper limbs in adults with neurological conditions: a systematic review and narrative analysis. BMJ Open, 11(12), e050711. https://doi.org/10.1136/bmjopen-2021-050711
    Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P., & Mehndiratta, A. (2021). Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. J Neuroeng Rehabil, 18(1), 76. https://doi.org/10.1186/s12984-021-00867-7
    Sivan, M., O'Connor, R. J., Makower, S., Levesley, M., & Bhakta, B. (2011). Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med, 43(3), 181-189. https://doi.org/10.2340/16501977-0674
    Starosta, M., Kostka, J., Redlicka, J., & Miller, E. (2017). Analysis of upper limb muscle strength in the early phase of brain stroke. Acta Bioeng Biomech, 19(3), 85-91.
    Subedi, N., Rawstorn, J. C., Gao, L., Koorts, H., & Maddison, R. (2020). Implementation of Telerehabilitation Interventions for the Self-Management of Cardiovascular Disease: Systematic Review. JMIR Mhealth Uhealth, 8(11), e17957. https://doi.org/10.2196/17957
    Suda, M., Kawakami, M., Okuyama, K., Ishii, R., Oshima, O., Hijikata, N., Nakamura, T., Oka, A., Kondo, K., & Liu, M. (2020). Validity and Reliability of the Semmes-Weinstein Monofilament Test and the Thumb Localizing Test in Patients With Stroke. Front Neurol, 11, 625917. https://doi.org/10.3389/fneur.2020.625917
    Terranova, T. T., Simis, M., Santos, A. C. A., Alfieri, F. M., Imamura, M., Fregni, F., & Battistella, L. R. (2021). Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial. Front Neurorobot, 15, 684019. https://doi.org/10.3389/fnbot.2021.684019
    van der Lee, J. H., Beckerman, H., Knol, D. L., de Vet, H. C., & Bouter, L. M. (2004). Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke, 35(6), 1410-1414. https://doi.org/10.1161/01.STR.0000126900.24964.7e
    Wagner, J. M., Rhodes, J. A., & Patten, C. (2008). Reproducibility and Minimal Detectable Change of Three-Dimensional Kinematic Analysis of Reaching Tasks in People With Hemiparesis After Stroke. Physical Therapy, 88(5), 652-663. https://doi.org/10.2522/ptj.20070255
    Woytowicz, E. J., Rietschel, J. C., Goodman, R. N., Conroy, S. S., Sorkin, J. D., Whitall, J., & McCombe Waller, S. (2017). Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Arch Phys Med Rehabil, 98(3), 456-462. https://doi.org/10.1016/j.apmr.2016.06.023
    Yoo, C., & Park, J. (2015). Impact of task-oriented training on hand function and activities of daily living after stroke. J Phys Ther Sci, 27(8), 2529-2531. https://doi.org/10.1589/jpts.27.2529
    Zeng, H., Chen, J., Guo, Y., & Tan, S. (2020). Prevalence and Risk Factors for Spasticity After Stroke: A Systematic Review and Meta-Analysis. Front Neurol, 11, 616097. https://doi.org/10.3389/fneur.2020.616097

    無法下載圖示 校內:2030-01-03公開
    校外:2030-01-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE