簡易檢索 / 詳目顯示

研究生: 吳冠儀
Wu, Guan-Yi
論文名稱: 聚多巴胺粒子膽固醇液晶顯示元件之製備及特性研究
Fabrication and Characterization of Cholesteric Liquid Crystal Devices Promoted by Polydopamine Particles
指導教授: 劉俊彥
Liu, Chun-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 70
中文關鍵詞: 聚多巴胺粒子膽固醇液晶高分子穩定型膽固醇液晶遮光器
外文關鍵詞: polydopamine particle, cholesteric liquid crystal, polymer stabilized cholesteric liquid crystal, light shutter
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液晶顯示元件中常添加高分子網絡、奈米顆粒或功能性染料以改善其光電性質,期望能達成低閥值、快速反應以及高對比等良好效能。此篇研究中,為改善膽固醇液晶顯示元件之光電性質,引入不同濃度的聚多巴胺粒子作為添加物。聚多巴胺粒子表面豐富的鄰苯二酚基及胺基提供大量反應位置以供表面改質。經由垂直配向劑 (DMOAP) 作表面處理的聚多巴胺粒子,期望能使液晶分子在周遭形成輻射狀排列,更有效的干擾液晶排列。研究結果顯示,加入改質過後的聚多巴胺粒子能有效提升膽固醇顯示元件的光電效能。其中以添加0.1 wt. % 改質聚多巴胺粒子的膽固醇顯示元件表現最好,相較於原先的膽固醇液晶,具備高對比值 (82.2 %)、低閥值 (2.4 V) 以及快速的反應時間 (7.7 ms)。
    為了更進一步提升液晶顯示元件的效能,經DMOAP改質過後的聚多巴胺粒子同樣被加入高分子穩定型膽固醇液晶顯示元件。研究顯示,表面改質的聚多巴胺粒子能夠有效干擾分散在高分子網絡中的液晶分子,並大幅提升元件的對比。添加0.1 wt. % 改質後的聚多巴胺粒子增進高分子穩定型液晶之效能,可達到最高對比 (93.8%) 以及低閥值 (10.4 V) 與快速反應時間 (10.2 ms)。

    Liquid crystal displays (LCDs) are often optimized with polymer networks, nanoparticles, or functionalized dyes. High performance with low threshold voltage, fast response and high contrast is expected. In this thesis, to improve the electro-optical performance of cholesteric liquid crystal (CLC) devices, various concentrations of polydopamine (PDA) particle were introduced. Due to the plenty of catechol and amine groups on the particle surface, the synthesized particles provided a lot of active sites for modification. With the surface modification by dimethyloctadecyl-3-(trimethoxysilyl)propyl ammonium chloride (DMOAP), the radial alignment of LC molecules around the surface modified particles was achieved which was expected to disturb the order of the LC arrangement. Based on the results, the modified PDA particles enhanced the performance of CLC devices efficiently. Adding of 0.1 wt. % DMOAP modified polydopamine particles into CLC device shows a higher contrast of 82.2 %, lower threshold voltage of 2.4 V and a fast response time of 7.7 ms.
    To further enhance electro-optical properties of LCD, the synthesized DMOAP modified PDA particles were doped into the polymer stabilized cholesteric liquid crystal (PSCLC) devices. The results suggest that the synthesized surface modified PDA particles disturb the aligning of liquid crystals dispersed in polymer networks leads to a great improvement in the contrast of the PSCLC devices. The best performance with high contrast of 93.8 %, low threshold voltage of 10.4 V and a fast response time of 10.2 ms was achieved in the PSCLC device with 0.1 wt. % modified PDA particle.

    Abstract I 中文摘要 II 致謝 III Contents IV List of Schemes VI List of Tables VII List of Figures VIII 1. Introduction 1 1-1 Preface 1 1-2 Research Motivation 2 2. Literature Review 3 2-1 Introduction of Liquid Crystals 3 2-2 Classification of Liquid Crystals 3 2-3 Thermotropic Liquid Crystals 4 2-3-1 Nematic Liquid Crystal (NLC) Phase 6 2-3-2 Smectic Liquid Crystal (SmLC) Phase 7 2-3-3 Cholesteric Liquid Crystal (CLC) Phase 9 2-3-4 Disc-like (Discotic) Liquid Crystals 15 2-4 Lyotropic Liquid Crystals 17 2-5 Physical Properties of Liquid Crystals 20 2-5-1 Anisotropic Properties of Liquid Crystals 20 2-5-2 Birefringence of Liquid Crystals 20 2-5-3 Dielectric Properties of Liquid Crystals 25 2-6 Polymer-Liquid Crystal Composites 27 2-6-1 Polymer Dispersed Liquid Crystals (PDLCs) 28 2-6-2 Polymer Stabilized Liquid Crystals (PSLCs) 29 2-6-3 Polymer Stabilized Cholesteric Liquid Crystals (PSCLCs) 31 2-7 Additives in Liquid Crystal System 32 2-8 Properties of polydopamine (PDA) 33 3. Experimental Section 35 3-1 Materials 35 3-2 Instruments 36 3-3 Experimental Process 37 3-3-1 Synthesis and Modification of Polydopamine (PDA) Particles 37 3-3-2 Preparation of Indium Tin Oxide (ITO) Cells 38 3-3-3 Preparation of CLC and PSCLC Mixtures 39 3-3-4 Fabrication of CLC and PSCLC Cells 40 3-3-5 Measurement of Electro-Optical Properties 42 4. Results and Discussion 43 4-1 Characterization of Polydopamine Particles 43 4-1-1 Morphology of Polydopamine Particles 43 4-1-2 Hydrophilicity of Polydopamine Particles 44 4-2 Characterization of Particle Doped CLC 44 4-2-1 Thermal Properties Analysis 46 4-2-2 Electro-Optical Properties of Particle Doped CLC Cells 49 4-3 Characterization of Particle Doped PSCLC 56 4-3-1 Thermal Properties Analysis 57 4-3-2 Electro-Optical Properties of Particle Doped PSCLC Cells 59 5. Conclusions 67 6. References 68

    [1] Reinitzer, F. Contributions to The Knowledge of Cholesterol. Liquid Crystals, 5(1), 12, 1989.
    [2] Dierking, I. Textures of Liquid Crystals. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
    [3] Katariya Jain, A., & R. Deshmukh, R. An Overview of Polymer-Dispersed Liquid Crystals Composite Films and Their Applications (book section in Liquid Crystal and Display Technology). IntechOpen. 2020.
    [4] Bushby, R. J., & Lozman, O. R. Discotic Liquid Crystals 25 Years On. Current Opinion in Colloid & Interface Science, 7(5-6), 343-354, 2002.
    [5] Goodby, J. W. Materials and Phase Structures of Calamitic and Discotic Liquid Crystals. (Book Section in Handbook of Visual Display Technology). Springer, Berlin Heidelberg, 2012.
    [6] Andrienko, D. Introduction to Liquid Crystals. Journal of Molecular Liquids, 267, 520-541, 2018.
    [7] Takanishi, Y. Chiral Symmetry Breaking in Liquid Crystals: Appearance of Ferroelectricity and Antiferroelectricity. Symmetry, 12(11), 1900, 2020.
    [8] Ueda, H., Akita, T., Uchida, Y., & Kimura, T. Measuring Magnetically-Tuned Ferroelectric Polarization in Liquid Crystals. Journal of Visualized Experiments,138, 58018, 2018.
    [9] Ger Vertogen, W. H. d. J. Thermotropic Liquid Crystals, Fundamentals. Springer, Berlin Heidelberg, 1988.
    [10] Gao, X., Qin, X., Yang, X., Li, Y., & Duan, P. (R)-Binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals. Chemical Communications, 55(42), 5914-5917, 2019.
    [11] Ryabchun, A., & Bobrovsky, A. Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics. Advanced Optical Materials, 6(15), 1800335, 2018.
    [12] Chilaya, G. Cholesteric Liquid Crystals: Optics, Electro-optics, and Photo-optics. (Book Section in Chirality in Liquid Crystals): Springer, New York, 2001.
    [13] Jones, L. P.. Alignment Properties of Liquid Crystals. Book Section in Handbook of Visual Display Technology). Springer, Berlin Heidelberg, 2012.
    [14] D’Elia, S., Barna, V., Scaramuzza, N., Strangi, G., & Bartolino, R. The influence of drying temperature on the close packed structure of silanized monolayers deposited on indium tin oxide (ITO) substrates. Journal of Materials Research, 24(9), 2784-2794, 2009.
    [15] Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, & Yoon, T.-H. Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection. Optics Express, 18(16), 6, 2010.
    [16] Khandelwal, H., Schenning, A. P. H. J., & Debije, M. G. Infrared Regulating Smart Window Based on Organic Materials. Advanced Energy Materials, 7(14), 1602209, 2017.
    [17] Lee, C. S., Kumar, T. A., Kim, J. H., Lee, J. H., Gwag, J. S., Lee, G.-D., & Lee, S. H. An electrically switchable visible to infra-red dual frequency cholesteric liquid crystal light shutter. Journal of Materials Chemistry C, 6(15), 4243-4249, 2018.
    [18] Bisoyi, H. K., & Kumar, S. Discotic nematic liquid crystals: science and technology. Chem. Soc. Rev., 39(1), 264-285, 2010.
    [19] Kumar, S. Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev., 35(1), 83-109, 2006.
    [20] Antônio M. Figueiredo Neto, S. R. A. S.. The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties. Oxford University Press, 2005.
    [21] Dierking, I., & Martins Figueiredo Neto, A. Novel Trends in Lyotropic Liquid Crystals. Crystals, 10(7), 604, 2020.
    [22] Rajak, P., Nath, L. K., & Bhuyan, B. Liquid Crystals: An Approach in Drug Delivery. Indian Journal of Pharmaceutical Sciences, 81(1), 11-21, 2019.
    [23] J. W. Doane, A. G., J. L. West, J. B. Whitehead Jr., B.-G. Wu. Polymer Dispersed Liquid Crystals for Display Application. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 165(1), 24, 1988.
    [24] Saeed, M. H. Z., S.; Cao, Y.; Zhou, L.; Hu, J.; Muhammad, I.; Xiao, J.; Zhang, L.; Yang, H. Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules, 25(23), 5510, 2020.
    [25] Ji-Hoon Lee, J. J. L., Young Jin Lim, Sudarshan Kundu, Shin-Woong Kang, Seung Hee Lee. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network. Optics Express, 21(22), 26914-26920, 2013.
    [26] Sun, H., Xie, Z., Ju, C., Hu, X., Yuan, D., Zhao, W., . . . Zhou, G. Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers, 11(4), 694, 2019.
    [27] Dierking, I. Recent developments in polymer stabilised liquid crystals. Polymer Chemistry, 1(8), 1153, 2010.
    [28] Lee, K. M., Tondiglia, V. P., & White, T. J. Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes. MRS Communications, 5(2), 223-227, 2015.
    [29] Ahmad, F., Jamil, M., & Jeon, Y. J. Reverse mode polymer stabilized cholesteric texture (PSCT) light shutter display – A short review. Journal of Molecular Liquids, 233, 187-196, 2017.
    [30] Yang, D. K., Chien, L. C., & Doane, J. W. Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters. Applied Physics Letters, 60(25), 3102-3104, 1992.
    [31] Hu, X., Zeng, W., Yang, W., Xiao, L., De Haan, L. T., Zhao, W., . . . Zhou, G. Effective electrically tunable infrared reflectors based on polymer stabilised cholesteric liquid crystals. Liquid Crystals,
    [32] Duran, H., Gazdecki, B., Yamashita, A., & Kyu, T. Effect of carbon nanotubes on phase transitions of nematic liquid crystals. Liquid Crystals, 32(7), 815-821, 2005.
    [33] Singh, U. B., Dhar, R., Dabrowski, R., & Pandey, M. B. Influence of low concentration silver nanoparticles on the electrical and electro-optical parameters of nematic liquid crystals. Liquid Crystals, 40(6), 774-782, 2013.
    [34] Mishra, M., Dabrowski, R. S., Vij, J. K., Mishra, A., & Dhar, R. Electrical and electro-optical parameters of 4 '-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles. Liquid Crystals, 42(11), 1580-1590, 2015.
    [35] Yan, X. D., Zhou, Y., Liu, W., Liu, S. Q., Hu, X. W., Zhao, W., . . . Yuan, D. Effects of silver nanoparticle doping on the electro-optical properties of polymer stabilized liquid crystal devices. Liquid Crystals, 8, 2019.
    [36] Mirzaei, J., Urbanski, M., Yu, K., Kitzerow, H.-S., & Hegmann, T. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. Journal of Materials Chemistry, 21(34), 12710-12716, 2011.
    [37] Mrukiewicz, M., Kowiorski, K., Perkowski, P., Mazur, R., & Djas, M. Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein Journal of Nanotechnology, 10, 71-78, 2019.
    [38] Zhang, L., Shi, J., Jiang, Z., Jiang, Y., Qiao, S., Li, J., . . . Zheng, Y. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem., 13(2), 300-306, 2011.
    [39] Wang, Z., Yang, H.-C., He, F., Peng, S., Li, Y., Shao, L., & Darling, S. B. Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 1(1), 115-155, 2019.
    [40] Ball, V. Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and Applications. Frontiers in Bioengineering and Biotechnology, 6, 2296-4185, 2018.
    [41] Sheng, W., Li, B., Wang, X., Dai, B., Yu, B., Jia, X., & Zhou, F. Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 6(3), 2068-2073, 2015.

    下載圖示 校內:2024-08-02公開
    校外:2024-08-02公開
    QR CODE