| 研究生: |
郭玉宏 Kuo, Yu-Hung |
|---|---|
| 論文名稱: |
施加電場對PC-12類神經細胞生長定位與軸突機械性質之影響 The Effect of Applied Electric Field on PC-12 Neuron-like Cell Outgrowth Orientation and Mechanical Properties |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 共同指導教授: |
林宙晴
Lin, Chou-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 電刺激 、PC-12類神經細胞 、免疫螢光染色 、原子力顯微鏡 、鈍角錐力學模型 |
| 外文關鍵詞: | Electrical stimulation, PC-12 neuron-like cell, Immunofluorescent, Atomic force microscopy, Blunted-pyramid model |
| 相關次數: | 點閱:155 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當神經束受到病變影響產生斷裂時,如果斷裂間隙過大,必須考慮使用神經導管手術進行神經修復。如果可以在神經導管內施加適當之電刺激,一般相信可以使再生神經纖維束更有效地連結。本研究主要目的為探討神經細胞軸突在電場刺激下,對其生長定位與機械性質之影響。
本研究實驗對像為PC-12類神經細胞,方法為針對同一顆細胞做原子力顯微鏡多點定位壓深實驗,並搭配免疫螢光染色。因為為高解析度、低壓深實驗,因此同時考慮原子力顯微鏡真實探針幾何形狀,使用鈍角錐力學模型分析壓深實驗資料,計算出細胞軸突末端視楊氏模數。
實驗結果顯示,施加電場使軸突生長方向逐漸偏向電場方向。視楊氏模數部分,本研究發現細胞軸突末端視楊氏模數與骨架分佈具有正相關性,另外,電場刺激會造成細胞軸突末端骨架重組並導致視楊氏模數增強。當神經細胞受到電場刺激時,會使生長錐上鈣離子濃度增加,造成軸突生長方向偏向負極。另外板足(filopodium)及偽足(lamellpodium)結構上也會受到鈣離子影響,使軸突末端視楊氏模數增加。
The nerve may be fractured due to trauma or disease, if the gap between nerve segments is too far from each other, the use of nerve conduits is often utilized for nerve repair. By applying appropriate electrical stimulation in nerve conduit, it is believed that regeneration of nerve fibers can enhanced. The main purpose of this thesis was to explore outgrowth orientation and mechanical properties of the nerve axons affected by the electrical field stimulation.
The subjects in this study are PC-12 neuron-like cells. Methods for multi-point indentation using atomic force microscope and immunofluorescence image for the same cell. A blunted-pyramid model by considering the real probe geometry was employed to calculate the apparent Young’s modulus of the axon
The results showed that the orientation of axon moves to the cathode progressively. The mechanical properties of axon are highly correlated to the distribution of cytoskeleton. The calcium ion concentration at growth cone may be increased due to electric field and the ultra structure filopodium and lamellpodium might be reorganized and their apparent Young’s modulus were increased.
[1]C.D. McCaig, L.Sangster, and R. Stewart, 「Neurotrophins Enhance Electric Field-Directed Growth Cone Guidance and Directed Nerve Branching,」 developmental dynamics, vol. 217, pp.299–308, 2000.
[2]A.M. Rajnicek, L.E. Foubister, and C.D. McCaig,「Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry,」 Journal of Cell Science, vol. 119, pp. 1736-1745, Jan. 2006.
[3]A.M. Rajnicek, L.E. Foubister and C.D. McCaig,「Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field,」 Journal of Cell Science, vol. 119, pp.1723-1735, Jan. 2006.
[4]Y.C. Fung, 「Biomechanics: Mechanical Properties of Living Tissues, 2nd ed, 」 Springer-Verlag, pp. 277-292, 1972.
[5]馮俊雄,「應用原子力顯微鏡與免疫螢光染色法探討PC-12類神經細胞之黏彈力學性質」國立成功大學機械工程研究所碩士論文, 2007.
[6]藍宏銘, 「原子力顯微鏡於PC-12類神經細胞軸突再生研究」 國立成功大學機械工程研究所碩士論文, 2008.
[7]H. Hertz, 「Uber die beruhrung fester elastische korper,」 Jreine Angew. Mathematick, vol.92, pp. 156-171, 1882.
[8]I.N. Sneddon, 「The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of. arbitrary profile,」 int ., J.Eng sci, vol. 3, pp. 37-41, 1965.
[9]J.R Barber, D.A Billings, 「An approximate solution for the contact area and elastic compliance of a smooth punch of arbitrary shape」 ,J.Mech.Sci,Vol.32,pp991-997,1990
[10]G.G. Bilodeau, 「Regular Pyramid Punch Problem.」 Journal of Applied Mechanics, Vol. 59, pp. 519-523, 1992.
[11]K.D. Costa, and F.C.P. Yin, 「Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy,」 Journal of Biomechanical Engineering, vol. 121, October, 1999.
[12]D.C. Kevin, J.S. Alan and F.C. Yin, 」 Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy,」 Journal of Biomechanical Engineering, vol. 128, pp. 176-184, 2006.
[13]A. B. Mathur, A. M. Collinsworth, W. M. Reichert et al., 「Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy,」 Journal of Biomechanics, vol. 34, 2001.
[14]F. Rico, P. Roca-Cusachs, N. Gavara, R. Farre, M. Rotger, and D. Navajas,「Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips,」 physical review, E 72, 021914 , 2005.
[15]L Lu, S.J Oswald, H Ngu, and F.C.P Yin, 「Mechanical properties of actin stress fibers in living cell」J.Biophysical,Vol.95,pp6060-6071,2008.
[16]P. Maivald., H. J. ButtS, A. C. Gould et al., 「Using force modulation to image surface elasticities with the atomic force microscope,」 Nanotechnology 2, 20 February, 1991.
[17M.Radmacher,M.Fritz,C.M.Kacher,J.P.Cleveland,andP.K.Hansma,「Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope,」 Biophysical Journal, vol. 70, pp. 556-567, Jan. 1996.
[18]R.E. Mahaffy, C.K. Shih, F.C. MacKintosh and J. Kas,「Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,」 PHYSICAL REVIEW LETTERS, vol. 85, No. 4, Jul. 2000.
[19]劉孟璋,「以原子力顯微鏡量測生命材料機械性質之研究-活體細胞的驗證實例」 國立成功大學機械工程研究所碩士論文, 2008.
[20]E.L. Grzywa, A.C. Lee, G.U. Lee, D.M. Suter, 「High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscope」,J.Neurobiology, pp.1529-1543, 2006.
[21]Y Xiong,A.C Lee, D.M Suter and G.U. Lee, 「Topography and nanomechanics of live neuronal growth cone analyzed by atomic force microscopy」J.Biophysical, vol 96, pp.5060-5072,2009.
[22]L.A Greene and A.S. Tischler, 「Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,」 Proc Natl Acad Sci USA, vol.73, pp. 2424-8, 1976.
[23]G Bing, C.F Quate and C Gerber, 「Atomic force microscope」 Phys.Rev.Lett 56:930, 1986
[24]C.D. MCCAIG, A.M. Rajnicek, B. Song and M. Zhao, 「Controlling cell behavior electrically current and future potential」 Physiological Review vol. 85, 2005.
[25]K.L Johnson, 「Contact mechanics, 」 Cambridge University Press, New York, 1985.
[26]W.R. Trickey, F.P.T. Baaijens, T.A. Laursen, L.G. Alexopoulos, F Guilak, 「Determination of the poisson’s ratio of the cell : recovery properties of chondrocytes after release from complete micropipette aspiration」 Journal of Biomechanics, pp78-87, 2006.
[27]N. Arimura and K. Kaibuchi, 「Neuronal polarity : from extracellular signals to intracellular mechanisms」Nature, vol 8, pp.194-205, 2007.
[28]F. Gittes, B. Mickey, J. Nettleton, and J. Howard, 「Flexural Rigidity of Microtubules and Actin Filaments Measured from Thermal Fluctuations in Shape,」
The Journal of Cell Biology, vol. 120, No. 4, pp. 923-934, 1993.
[29]Veeco instrument, https://www.veecoprobes.com.
[30]張嘉峰, 「應用原子力顯微術於PC-12類神經細胞之生物力學研究」, 國立成功大學微機電系統工程研究所碩士論文, 2006.
[31]陳悅生, 「想換條新的神經嗎?-神經再生」,科學發展月刊356期, 2002