簡易檢索 / 詳目顯示

研究生: 柯子星
Ko, Tzu-Hsing
論文名稱: 以紅壤在高溫下去除煤炭氣化氣中 硫化氫之研究
High-Temperature Sorption of Hydrogen Sulfide From Coal Derived Gas by Red Soils
指導教授: 朱信
Chu, Hsin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 174
中文關鍵詞: 硫化氫煤炭氣化氣吸收高溫紅壤脫硫/再生衰退模式
外文關鍵詞: Hydrogen sulfide, Coal gasification syngas, Sorption, High temperature, Red soils, Sorption/regeneration, Deactivation model.
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著石油、天然氣等能源之蘊藏量日益枯竭,如何淨潔利用蘊藏量最豐富的煤炭能源,將是未來能源發展之重要課題。煤炭氣化複循環發電技術(IGCC)無論在技術成熟性、能源效率及環保性能與其他發電技術相較均佔優勢,因此將會是未來發電的主流技術,目前商業運轉之大型煤炭氣化複循環發電機組皆使用商業化之溼式除硫程序,然而溼式除硫必須用水來冷卻煤氣,使系統熱效率降低,為提高熱效率降低發電及環保成本,高溫除硫方法是目前較受重視的處理技術。
      基於土壤低成本及蘊藏量豐富之特性,本研究以土壤為吸收劑在高溫下吸收煤炭氣化氣中之硫化氫。結果顯示每種土系對硫化氫皆有去除效果,其中以老埤土壤(紅壤)具有較高的脫硫容量。在去除土壤中的游離鐵後發現對硫化氫的去除能力明顯降低,顯示游離鐵在除硫方面扮演相當重要的角色,同時亦發現高游離鐵含量的土壤具有較佳的脫硫容量。此外,經由理論計算所得之脫硫容量與實驗所得之脫硫容量差異不大,顯示去除硫化氫之機制主要來自於鐵與硫的反應。綜合上述實驗結果,選擇老埤紅壤作為後續處理硫化氫的實驗主角。
      觀察在不同操作條件下硫化氫去除的情形,發現提高反應溫度會降低硫化氫的去除能力,此與各種不同狀態的氧化鐵有著密切的關係。在還原狀態下,紅壤中的氧化鐵會因高溫過度還原而形成與硫化氫親和力較差的二價鐵 (FeO),最佳反應溫度在773K。另外,隨一氧化碳濃度的增加,氫氣與二氧化碳濃度的減少,脫硫容量明顯的增加,此結果可以water-shift reaction來說明。空間流速在1,000-10,000 mlhr-1g-1之間脫硫容量受空間流速之影響並不顯著;硫化氫濃度對脫硫容量之影響亦不顯著。
      經由FTIR的鑑定與解析,發現有CO2, SO2與 COS等中間產物的產生。其中CO2的生成與water-shift reaction有關;SO2的生成可能來自於紅壤中的有機質與H2S的反應。隨脫硫時間的增加,SO2與CO2的濃度明顯下降。在完成脫硫反應後,大量的COS產生。經由熱力學的計算得知COS的生成主要是進流氣中的CO與H2S反應所導致。於多次除硫/再生的實驗中發現老埤紅壤具有不錯的再生能力,在經過十次除硫/再生後的老埤紅壤仍具有80%的除硫能力。

      XRPD的結果顯示在脫硫後老埤紅壤中氧化鐵的晶相消失,但並未觀察到有Fe-S晶相的產生,這可能是在反應後的Fe-S是以無定型(amorphous)之狀態存在於紅壤之中。由EDS的鑑定得知紅壤中的部分氧被硫所取代。經由XPS與TPO的進一步分析得知,鐵與硫的鑑結可能是以非化學計量比之關係存在於紅壤中,可能的化學式為Fe0.985S或Fe0.975S。EXAFS數據顯示,距中心鐵原子2.362Å有2.75個硫原子,該配位數明顯高於其理論值,此發現證明反應後老埤紅壤之產物主要是以非化學計量比之硫化鐵存在。
      為了解造成紅壤脫硫效率衰退的原因,將十次脫硫/再生後的紅壤進行分析與鑑定。結果顯示仍有部分殘餘的硫吸附在再生後的紅壤中。由XPS的解析發現殘餘的硫主要是以硫酸根與元素硫以及部分金屬硫化物為主,這些硫化物可能是造成紅壤脫硫效率降低的主要原因之一。此外,由固態核磁共振的結果顯示五配位的鋁矽化合物存在於再生後的紅壤,該鋁矽化合物的生成可能與再生過程中過度的放熱反應有關,部分游離態的鋁與土壤中的矽鍵結生成。
      由動力的研究發現,第一型衰退模式所求得之活化能為131.51 kJ/mol,碰撞因子為2.31*1017。第二型衰退模式所求得之活化能為34.02 kJ/mol,碰撞因子為2.49*107。以兩模式進行貫穿曲線之預測,結果亦顯示該兩模式皆可正確預估實驗之貫穿曲線。
      另外,將紅壤與其他商用吸收劑以及自製吸收劑做一系列之比較後,結果顯示不論在脫硫能力、再生性能評估、再生後孔洞結構上,紅壤對吸收硫化氫之效果並不遜於商用吸收劑與自製吸收劑。

     It is well known that hydrogen sulfide (H2S) is a toxic gas that presents widely in manufacture plants such as wastewater treatment plants, petroleum plants and coal gasification plants. H2S present in coal gasification syngas involved other inorganic reduction gases, carbon monoxide (CO) and hydrogen (H2), at high temperature (higher than 673K) make coal gasification plants different from others.
     Due to low cost and abundance, various soils series were chosen and assessed with their sorption performance of H2S at high temperatures. In addition, several spectroscopic techniques such as X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Solid-state nuclear magnetic resonance (SSNMR), Energy dispersive X-ray spectroscopy (EDS) and X-ray absorption spectroscopy (XAS) were used to characterize the soils’ structure before and after sorption and regeneration processes.
     Results show that all the tested soils have certain sorption efficiency for hydrogen sulfide under high temperatures. Free iron oxides play an important role for the sorption of hydrogen sulfide. Red soils have the best sulfur sorption capacity compared to other soils. The reaction temperature higher than certain level has a negative effect on the sorption of hydrogen sulfide as a result of unfavorable thermodynamic property of iron oxides with hydrogen sulfide in the reductive atmosphere. The reaction temperature of 773K is the optimal choice for the sorption of hydrogen sulfide by red soils.
     On the concentrations of CO and H2, the sorption efficiency of H2S by red soils increases with CO but decreases with H2. This can be explained via the water shift reaction theory. The effect of CO2 was also performed and appeared to be the negative effect, confirming that the water-shift reaction plays an important role in this process.
     Appreciable amounts of by-products, CO2, SO2 and COS were detected through the on-line FTIR spectroscopy during the initial and later stages of the sorption process. The formation of CO2 is related to the water-shift reaction, and SO2 is probably attributed to the reaction of organic matters in red soils with H2S. The concentration of COS after breakthrough was quantified by GC/FPD and found to be about 380 ppm, which is close to the equilibrium concentration of the reaction of inlet CO and H2S at a temperature of 773K.
     In the regeneration tests, the LP soils can be regenerated and thus reused after oxidation process. No significant degradation occurs on the LP soils after five sorption/regeneration cycles. The sulfur sorption capacity of the tenth regenerated sorbent still remains at least 80% compared to the fresh one.
     XRPD results indicate that iron oxide species disappear from the reacted soils. EDS analyses show that a significant amount of sulfur is present in the reacted LP soils, which is in agreement with the results of the elemental analysis and the calculated value based on breakthrough curves. XPS regression fitting results further indicate that sulfur retention may be associated with the iron oxides. S2p XPS fittings and temperature-programmed oxidation (TPO) point out that the major sulfur species present in the reacted soils are attributed to polysulfides. On the basis of the EXAFS analysis, the bond distance for Fe-S is 2.362Å with coordination number of 2.75. Higher coordination number indicates that the crystalline structural for Fe-S may be present in nonstoichiometric form.
     After regeneration, the residual sulfur species including sulfide, sulfate and elemental sulfur are observed in the soils by FTIR and XPS, which is the major reason to cause deactivation of soils.
     Additionally, significant changes in 27Al and 29Si were identified through the SSNMR analysis. A pentacoordinated structure is formed after regeneration, suggesting the formation of aluminosilicate. The losses of surface area may be associated with the structure changes in aluminum and silica.
     In the operating range of this study, the activation energy, Ea, is 136.35 kJ/mol and the frequency factor, A, is 6.25*1017 for type I model. The activation energy, Ea, is 34.02 kJ/mol and the frequency factor, A, is 2.49*107 for type II model. The predicted breakthrough behaviors derived from the fitting of the deactivation type I and II kinetic models agree well with the results of the experiments.
     Comparison with the commercial and lab-made sorbents, the sulfur sorption capacity, regenerability and structure stability for LP red soil have no significant loss. Meanwhile, red soil also has the lower preparation cost among all metal oxide sorebnts. Combined with these advantages, red soil can be taken into account as a potential sorbent for high temperature desulfurization.

    摘要 E ABSTRACT G ACKWEDGEMENTS J CONTENT I LIST OF TABLES V LIST OF FIGURES VII NOMENCLATURE XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURES SURVEY 6 2.1 Control Techniques for Hydrogen Sulfide 6 2.2 History of Sorbent Development 7 2.2.1 Requirement of Hot Coal Gas Desulfurization Sorbent 7 2.2.2 Thermodynamic Characterizations 8 2.2.3 Sorbent Species and Properties 16 2.3 Preparation Method for Metal Sorbents 22 2.3.1 Precipitation and Coprecipitation Methods 22 2.3.2 The Sol-Gel Method 23 2.3.3 Calcination Treatment 24 2.4 Development of Sorbents Nowadays 24 2.5 Soils and Their Classification 26 2.5.1 The Types of Iron Oxides 27 2.5.2 Iron Oxides Formation in Soils 34 2.5.3 Formation Process of Red Soils (Latosol, Laterite soils) 35 2.6 Deactivation Model for Kinetic Study 37 CHAPTER 3 EXPERIMENTAL MATERIALS, EQUIPMENTS AND PROCEDURES 39 3.1 Soil Samples 39 3.2 Sulfidation and Regeneration Experimental System 42 3.3 Soils Characterization 46 3.3.1 Basic Properties 46 3.3.2 BET Surface Area 46 3.3.3 X-ray Powder Diffraction Spectroscopy (XRPD) 47 3.3.4 X-ray Photoelectron Spectroscopy (XPS) 47 3.3.5 Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Fluorescence (XRF) 47 3.3.6 Fourier Transform Infrared Spectroscopy (FTIR) 49 3.3.7 Elemental Analysis (EA) 49 3.3.8 Solid-state Nuclear Magnetic Resonance Spectroscopy (SSNMR) 49 3.3.9 X-ray Absorption Spectroscopy (XAS) 50 3.3.10 Temperature Programming Reactions (TPR, TPS and TPO) 50 3.3.11 Superconducting Quantum Interference Device Magnetometor (SQUID) 50 3.4 Experimental Procedures 51 3.5 Calibration Stabilization Test for H2S 53 CHAPTER 4 RESULTS AND DISCUSSION 56 4.1 The Preliminary Test of the Selected Soil Orders 56 4.1.1 Basic Physical and Chemical Properties of Various Oxisols 61 4.1.2 Clay Mineralogy of Oxisols 62 4.1.3 The Preliminary Test of the Selected Red Soils 68 4.2 Effects of the Operating Parameters 73 4.2.1 The Effect of Reaction Temperature on the Sorption of H2S 73 4.2.2 The Effect of CO and H2 Concentrations on the Sorption of H2S 77 4.2.3 Effects of the Concentration of H2S and Weight Hourly Space Velocity (WHSV) on the Sorption of H2S 84 4.2.4 Multiple Sorption/Regeneration Cycles for the LP Red Soil. 85 4.2.5 Identification of Gas Composition Using FTIR Spectroscopy 86 4.3 Temperature Programmed Study 95 4.3.1 Temperature-Programmed Reduction (TPR) for the LP Red Soil 95 4.3.2 Temperature-Programmed Sulfidation (TPS) for the LP Red Soil 97 4.3.3 Temperature-Programmed Oxidation (TPO) for the LP Red Soil 99 4.4 The Deactivation Kinetic Model Study 104 4.4.1 Deactivation Type I Model (m=0, n=1) 104 4.4.2 Deactivation Type II Model (m=1, n=1) 105 4.5 Characterization of the Sulfided LP Red Soil 113 4.5.1 Energy Dispersion Spectroscopy 113 4.5.2 X-ray Powder Diffraction 113 4.5.3 FTIR Spectroscopy 114 4.5.4 X-ray Photoelectron Spectroscopy (XPS) 115 4.5.5 X-ray Absorption Spectroscopy (XAS) 117 4.6 Characterization of the Regenerated LP Red Soil 128 4.6.1 SEM/EDS Analysis 128 4.6.2 Qualitative Analysis of Gas Phases via FTIR during Regeneration Progress 132 4.6.3 Characterization of the LP Red Soils at Various Statuses Using FTIR Spectroscopy 135 4.6.4 X-ray Photoelectron Spectroscopy (XPS) Study 138 4.6.5 27Al and 29Si MAS NMR Investigation 141 4.7 Comparison with the Commercial and Lab-made Sorbents 145 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 154 5.1 Conclusions 154 5.2 Suggestions 157 REFERENCES 158

    1. Atimtay, A.T. 2001. Cleaner energy production with integrated gasification combine cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas. Clean Produc. Proce. 2, 197-108.
    2. Sage, P.W. 1998. World energy resources, their use and the environment. Proceeding of the NATO advanced study institute on desulfurization of hot coal gas with regenerable metal oxide sorbents: New developments. Turkey July.
    3. De Moss, T.B. 1997. Deregulation can play savior or spoiler for clean coal progress. Power Eng. 2, 134-143.
    4. Ikeda, H.; Asaba. H.; Takeuchi, Y. 1988. Removal of H2S, CH3SH and (CH3)3N from air by use of chemically treated activated carbon. J. Chem. Eng. Japan. 21, 91-97.
    5. Gupta, R.P.; Turk, B.S.; Portzer, J.W.; Cicero, D.C. 2001. Desulfurization of syngas in a transport reactor. Environ. Prog. 21, 187-195.
    6. Yang, R.; Chin, T.; Yuen, L.N.; Duan, H.Q.; Liang, D.T.; Tay, J.H. 2004. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons. Environ. Sci. Technol. 38, 316-323.
    7. Gangwal, S.K.; Stogner, J.M.; Harkins, S.M. 1989. Testing of novel sorbents for H2S removal from coal gas. Environ. Prog. 8, 26-34.
    8. Gacia, E.; Cilleruelo, C.; Ibarra, J.V.; Pineda, M.; Palacios, J.M. 1997. Kinetic study of high temperature removal of H2S by novel metal oxide sorbents. Ind. Eng. Chem. Res. 36, 846-853.
    9. Lew, S.; Jothimurugesan, K.; Stephanopoulos, M.F. 1989. High-temperature H2S removal from fuel gases by regenerable zinc oxides-titanium dioxide sorbent. Ind. Eng. Chem. Res. 28, 535-541.
    10. Patrick, V.; Gavalas, G.R.; Sharma, P.K. 1993. Reduction, sulfidation and regeneration of mixed iron-aluminum oxide sorbents. Ind. Eng. Chem. Res. 32, 519-532.
    11. Kyotani, T.; Kawashima, H.; Tomita, A. 1989. High temperature desulfurization reaction with Cu-containing sorbents. Environ. Sci. Technol. 23, 218-223.
    12. Westmoreland, P.R.; Harrison, D.P. 1976. Evaluation of candidate solids for high-temperature desulfurization of low-BTU gases. Environ. Sci. Technol. 10, 659-661.
    13. Zeng, Y. 1999. Cerium oxide as a highly effective and durable high temperature desulfurization sorbent. Doctoral dissertation, Chemical Engineering Department, Louisiana State University.
    14. Yi, K.B. 2000. Ceria-zirconia oxide high temperature desulfurzation sorbent. Doctoral dissertation, Chemical Engineering Department, Louisiana State University.
    15. Alaya R.E.; Venkataramani, V. 1998. Advanced sorbent development program development of sorbents for moving-bed and fluidized-bed applications. GTI final report.
    16. Freund, H. 1984. Intrinsic global rate constant for the high temperature reaction of CaO with H2S. Ind. Eng. Chem. Fundam. 23, 338-341.
    17. Akiti, T.T.; Constant, K.P.; Doraiswamy, L.K.; Wheelock, T.D. 2002. A regenerable calcium-based core-in-shell sorbent for desulfurization hot coal gas. Ind. Eng. Chem. Res. 41, 587-597.
    18. Jun H.K.; Lee T.J.; Ryu S.O.; Kim J.C. 2001. A study of Zn-Ti-Based H2S removal Sorbents Promoted with Cobalt Oxides. Ind. Eng. Chem. Res. 40, 3547-3556.
    19. Tamhankar S.S. 1986. Mixed-Oxide Sorbents for High-Temperature Removal of Hydrogen Sulfide. Ind. Eng. Chem. Process Des. Dev. 25, 429-437.
    20. Ayala, R.E.; Marsh, D.W. 1991. Characterization and long range reactivity of zinc ferrite in high temperature desulfurization processes. Ind. Eng. Chem. Res. 30, 55-60.
    21. Gacia, E.; Cilleruelo, C.; Ibarra, J.V.; Pineda, M.; Palacios, J.M. 1997. Kinetic study of high temperature removal of H2S by novel metal oxide sorbents. Ind. Eng. Chem. Res. 36, 846-853.
    22. Ko, T.H.; Chu, H.; Chaung, L.K. 2005. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere 58, 467-474.
    23. Grindley, T.; Steinfeld, G. 1981. Development and testing of regenerable hot coal-gas desulfurization sorbents. DOE/MC/16545-1125.
    24. Focht, G.D.; Ranade, P.V.; Harrison, D.P. 1988. High temperature desulfurization using zinc ferrite: reduction and sulfidation kinetics. Chem. Eng. Sci. 43, 2005-3013.
    25. Focht, G.D.; Ranade, P.V.; Harrison, D.P. 1989. High temperature desulfurization using zinc ferrite: solid structural property changes. Chem. Eng. Sci. 44, 215-224.
    26. Lew, S.; Jothimurugesan, K.; Flytzani-Stephanopoulo, M. 1992. Sulfidation of zinc titanate and zinc oxide solids. Ind. Eng. Chem. Res. 31, 1890-1899.
    27. Mojtahedi, W.; Salo, K.; Abbasian, J. 1994. Desulfurization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents. Fuel Proc. Technol. 7, 55-65.
    28. Hatori, M.; Sasaoka, E. 2001. Role of TiO2 on oxidative regeneration of spent high-temperature desulfurization sorbent ZnO-TiO2. Ind. Eng. Chem. Res. 40, 1884-1890.
    29. Jun, H.K.; Lee, T.J.; Ryu, S.O.; Kim, J.C. 2001. A study of Zn-Ti based H2S removal sorbents promoted with cobalt oxides. Ind. Eng. Chem. Res. 40, 3547-3556.
    30. Poston, J.A. 1996. A reduction in the spalling of zinc titanate desulfurization sorbents through addition of lanthanum oxide. Ind. Eng. Chem. Res. 35, 875-882.
    31. Akyurtlu, A.; Akyurtlu, J. 1995. Hot gas desulfurization with vanadium promoted zinc ferrite sorbents. Gas. Sep. Purif. 9, 17-25.
    32. Jun, H.K.; Koo, J.H.; Lee, T.J.; Ryu, S.O.; Yi, C.K.; Ryu, C.K.; Kim, J.C. 2004. A study of Zn-Ti based H2S removal sorbents promoted with cobalt and nickel oxides. Energy Fuels. 18, 41-48.
    33. Gupta, R.P.; Gangwal, S.K.; Jain, S.C. 1992. Development of zinc ferrite sorbents for desulfurization of hot coal gas in a fluid-bed reactor. Energy Fuels. 2, 21-27.
    34. Sugitani, T. 1987. Fundamental studies and present status of IHI hot gas desulfurization process. International Conference on Coal Science. Amsterdam, The Netherlands. 915-919.
    35. Van der Wal, J.J. 1987. Desulfurization of process gas by means of iron oxide on silica sorbents. Doctoral dissertation, Chemical Engineering Department, University of Utrecht, The Netherlands.
    36. Patrick, V.; Gavalas, G.R.; Flytzani-Stephanopoulos, M.; Jothimurugesan, K. 1989. High-temperature sulfidation regeneration of CuO-Al2O3 sorbents. Ind. Eng. Chem. Res. 28, 931-940.
    37. Yasyerli, S.; Dogu, G.; Irfan, A.; Dogu, T. 2001. Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40, 5206-5214.
    38. Li, Z.; Flytzani-Stephanopoulos, M. 1997. Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas ddesulfurization. Ind. Eng. Chem. Res. 36, 187-196
    39. Abbasian, J.; Slimane, R.B. 1998. A regenerable copper-based sorbents for H2S removal fron coal gases. Ind. Eng. Chem. Res. 37, 2775-2782.
    40. Westmoreland, P.R.; Gibson, J.B. Harrison, D.P. 1977. Comparative kinetics of high temperature reaction between H2S and selected metal oxides. Environ. Sci. Technol. 11, 488-491.
    41. Atakül, H.; Wakker, J.P.; Gerritsen, A.W.; Van den, P. 1995. Removal of H2S from fuel gases at high temperature using MnO/γ-Al2O3. Fuel. 74, 187-191.
    42. Atakül, H.; Wakker, J.P.; Gerritsen, A.W.; Van Den, P. 1996. Regeneration of MnO/γ-Al2O3 used for high temperature desulfurization of fuel gases. Fuel. 75, 373-378.
    43. Ben-Slimane, R.; Hepworth, M.T. 1994. Desulfurization of hot coal derived fuel gases with manganese based regenerable sorbents: Loading (sulfidation) test. Energy Fuels. 8, 1175-1183.
    44. Ben-Slimane, R.; Hepworth, M.T. 1994. Desulfurization of hot coal derived fuel gases with manganese based regenerable sorbents: Regeneration and multicycle tests. Energy Fuels. 8, 1184-1191.
    45. Alonso, L.; Palacios, J.M. 2002. A TEM and XRD study of the structural changes involved in manganese-based regenerable sorbents for hot coal gas desulfurization. Chem. Mater. 14, 225-231.
    46. Alonso, L.; Palacios, J.M. 2002. Performance and recovering of a Zn-doped manganese oxide as a regenerable sorbent for hot coal gas desulfurization. Ener. Fuel. 16, 1550-1556.
    47. Alonso, L.; Palacios, J.M.; Garcia, E.; Moliner, R. 2000. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization. Fuel Process. Technol. 62, 31-44.
    48. Westmoreland, P.R. 1974. Desulfurization of gasified coal: evaluation of candidate high-temperature sulfur acceptors. M.S. Thesis, Chemical Engineering Department, Louisiana State University.
    49. Meng, V.; Kay, D.A. 1986. Gaseous desulfurization using rare earth oxides. Proceedings of the world congress on high tech. Ceramics, the 6th International Meeting on modern ceramics technologies. Milan, P. Vincenzini, Ed., Elsevier.
    50. Zeng, Y.; Zhang, S.; Groves, F.R.; Harrison, D.P. 1999. High-temperature gas desulfurization with elemental sulfur production. Chem. Eng. Sci. 54, 3007-3017.
    51. Satterfield, C.N. Heterogeneous catalysis in practice.
    52. Muccillo, E.N.; Avila, D.M. 1999. Synthesis and characterization of submicron ziconia-12 mol% ceria ceramics. Ceramics International. 25, 345-351.
    53. Rossignol, S. 1999. Effect of the preparation method on the properties of zirconia ceria materials. J. Mater. Chem. 9, 1615-1620.
    54. Ordonez, S.; Sastre, H.; Diez, F.V. 2001. Catalytic hydrodechlorination of tetrachloroethylene over red mud. J. Hazard. Mater. 81, 103-114.
    55. Alvares, J.; Rosal, R.; Satre, H.; Diez, F.V. 1998. Characterization and deactivation studies of an activated sulfided red mud used as hydrogenation catalyst. Appl. Catal. A. 167, 215-223.
    56. Singh, M.; Upadhayay, S.N.; Prasad, P.M. 1996. Preparation of special cements from red mud. Water Res. 16, 665-670.
    57. Slimane, R.B.; Abbasian, J. 2001. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization. Adv. Environ. Res. 70, 97-113.
    58. Jang, H.T.; Kim, S.B.; Doh, D.S. 2003. The removal of hydrogen sulfide with manganic sorbent in a high-temperature fluidized-bed reactor. Korea J. Chem. Eng. 20, 116-120.
    59. Furimsky, E.; Biagini, M. 1996. Potential for preparation of hot gas clean-up sorbents from spent hydroprocessing catalysts. Fuel. Process. Technol. 46, 17-24.
    60. Sasaoka, E.; Ichio, T.; Kasaoka, S. 1992. High-temperature hydrogen sulfide removal from coal-derived gas by iron ore. Energy Fuel. 6, 603-608.
    61. Soil Survey Staff. 1989. Amendments to soil taxonomy. USDA, Washington, D.C.
    62. Singer, M.J.; Munns, D.N. Soils: an introduction fifth edition. Prenhall publication, 2002. Chapter 1, p.9.
    63. Cornell, R.M.; Schwertmann, U. The iron oxides. Structure, properties, reactions, occurrence and uses. VCH publication. 1996.
    64. Schwertmann, U.; Cornell, R.M. Iron oxides in the laboratory. Wiley-VCH publication. 2000.
    65. Hill, R.J.; Craig, J.R.; Gibbs, G.V. 1979. Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317-339.
    66. Jung, T.C. 1989. Clay mineralogical characteristics of some latosol of Taiwan. Proc. Natl. Sci. Coun. B. 13, 160-167.
    67. Shibuya, K. 1922. The laterite soils of Formosa Island. Soil Sci. 13, 425-431.
    68. Wang, M.K.; Houng, K.H.; Lim, K.K.; Lin, Y.W.; Yang, F.Y.; Tseng, P.K. 1988. Maghemite in Ta-Tun and Peng-Hu red soils. J. Chine. Agric. Chem. Soc. 26, 256-263. (in Chinese)
    69. Chen, Z.S. 1990. Red soils in Taiwan: morphology, genesis and classifiation. Proceedings of international symposium on management and development of red soils in Asia and Pacific regions. Nanjing, China. 3-15.
    70. Wang, M.K.; Chang, T.W.; Huang, M.Y. 1993. Iron oxides distribution in red soils of Taiwan. J. Chine. Agric. Chem. Soc. 31, 229-246. (in Chinese)
    71. Kao, K.S. Soil science. 1990. p.675. (in Chinese)
    72. Karayilan, D.; Dogu, T.; Yasyerli, S.; Dogu, G. 2005. Mn-Cu and Mn-Cu-V mixed-oxide regenerable sorbents for hot gas desulfurization. Ind. Eng. Chem. Res. In press.
    73. Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. 2001. Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40, 5206-5214.
    74. Kopac, T.; Kocabas, S. 2004. Deactivation models for sulfur dioxide adsorption on silica gel. Adv. Environ. Res. 8, 417-424.
    75. Gee, G.W.; Bauder, J.W. Particle-size analysis. In: A. Klute (ed.), Methods of Soil Analysis. Part I. 2nd ed. American Society of Agronomy, Madson, WI, 1986; 383-412.
    76. McLean, E.O. Soil pH and lime requirement. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis. Part II. 2nd ed. American Society of Agronomy, Madson, WI, 1982; 199-224.
    77. Nelson, D.W.; Sommer, L.E. Total carbon, organic carbon, and organic matter. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis. Part II. 2nd ed. American Society of Agronomy, Madson, WI, 1982; 539-577.
    78. Rhoades, J.D. Cation exchange capacity. In: A.L. Page, R.H. Miller, and D.R. Keeney (eds.) Methods of Soil Analysis. Part II. 2nd ed. American Society of Agronomy, Madson, WI, 1982; 149-157.
    79. Mehra, O.P.; Jackson. M.L. Iron oxides removed from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Proc. 7th Nat. Conf. Clays Clay Miner. 1960, 7, 317-327.
    80. Schwertmann, U. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Loesung. Z. P.anzenernaehr. Dueng. Bodenkd. 1964, 105, 194-202.
    81. Lekwa, G.; Whiteside, E.B. 1986. Coastal plain soils of South Eastern Nigeria: 6 forms of extractable iron, aluminum and phosphorus. Soil Sci. Soc. Am. J. 50, 160-166.
    82. Schwertmann, U. 1985. The effect of pedogenic environments on iron oxide minerals. Adv. Soil Sci. 1, 171-200.
    83. Aniku, J.R.; Singer, M.J. Pedogenic 1990. Iron oxides trends in a marine terrace chronosequence. Soil Sci. Soc. Am. J. 54, 147-152.
    84. Patrick, V.; Gavalas, G.R.; Sharma, P.K. 1993. Reduction, sulfidation, and regeneration of mixed iron-aluminum oxide sorbents. Ind. Eng. Chem. Res. 32, 519-532.
    85. Sasaoka, E.; Sakamoto, M.; Ichio, T.; Kasaoka, S.; Sakata, Y. 1993. Reactivity and durability of iron oxide high temperature desulfurization sorbents. Energy Fuels. 7, 632-638.
    86. Cihacek, L.J.; Bremner, J.M. 1990. Capacity of soils for sorption of hydrogen sulfide. Commun. Soil Sci. Plant Anal. 21, 351-363.
    87. Bohn, H.L.; Fu, Y.; Huang, C.G. 1989. Hydrogen sulfide sorption by soils. Soil Sci. Soc. Am. J. 53, 1914-1917.
    88. Yumura, M.; Furimsky, E. 1985. Comparison of CaO, ZnO and Fe2O3 as H2S adsorbents at high temperatures. Ind. Eng. Chem. Process. Des. Dev. 24, 1165-1168.
    89. Focht, G.D.; Ranade, P.V.; Harrison, D.P. 1988. High-temperature desulfurization using zinc ferrite: reduction and sulfidation kinetics. Chem. Eng. Sci. 43, 3005-3013.
    90. Gupta, R.P.; Gangwal, S.K.; Jain, S.C. 1992. Development of zinc ferrite sorbents for desulfurization of hot coal gas in a fluid-bed reactor. Energy Fuels. 6, 21-27.
    91. Chang, J.C.; Wu, S.J.; Hsu, H.W.; Yang, C.L.; Hsieh, C.L. Introduction of clean coal power generation technology and integrated gasification combined cycle. Final report No. 883LK6400. Industrial Technology Research Institute, 1999.
    92. NOVEM, System Study High Temperature Gas Cleaning at IGCC System. Netherlands Agency for Energy and the Environment. 1991.
    93. Galvin, L.D.; Atimtay, A.T.; Gupta, R.P. 1998. Zeolite supported metal oxide sorbents for hot gas desulfurization. Ind. Eng. Chem. Res. 37, 4157-4166.
    94. Mojtahedi, W.; Kurkela, E.; Nieminen, M. 1990. Release of sodium and potassium in the PFB gasification of peat. J. Inst. of Energy. 63, 95-100.
    95. Sheldon, H.D.; Lee, F.G.; Swift, W.M.; Banerjee, D.D. 1991. Alkali vapor emission from PFBC of Illinois coals. Combust. Sci. Tech. 86, 327-336.
    96. Slimane, R.B.; Abbasian, J. 2000. Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperature. Advan. Environ. Res. 4, 147-162.
    97. Ko, T.H.; Chu, H.; Chaung, L.K.; Tseng, T.K. 2004. High temperature removal of hydrogen sulfide using N-150 sorbent. J. Hazard. Mater. 114, 145-152.
    98. Zhang, J.C.; Wnag, Y.H.; Wu, D.Y. 2003. Effect investigation of ZnO additive on Mn-Fe/γ-Al2O3 sorbents for hot coal gas desulfurization. Energy Conver. Manage. 44, 357-367.
    99. Lin, H.Y.; Chen, Y.W.; Li, C.P. 2003. The mechanism of reduction of iron oxide by hydrogen. Therm. Acta. 400, 61-67.
    100. Unmuth, E.E.; Schwartz, L.H.; Butt, J.B. 1980. Iron alloy Fischer-Tropsch catalysts: I: Carburization studies of the Fe-Ni system. J. Catal. 63, 404-414.
    101. Munteanu, G.; Ilieva, L.; Andreeva, D. 1997. Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems. Therm. Acta. 291, 171-177.
    102. Inamura, K.; Iwamoto, R.; Iino, A.; Takyu, T. 1993. Reduction and Sulfidation Properties of Iron Species in Iron-Supported Y-Zeolite by Temperature-Programmed Reduction and Sulfiding. J. Catal. 142, 272-288.
    103.Ranade, P.V.; Harrison, D.P. 1981. The variable property grain model applied to the ZnO-H2S reaction. Chem. Eng. Sci. 36, 1079-1090.
    104. Sa, L.N.; Focht, G.D.; Ranade, P.V.; Harrison, D.P. 1989. High-temperature desulfurization using zinc ferrite: solid structural property changes. Chem. Eng. Sci. 2, 215-224.
    105. Pineda, M.; Fierro, J.L.; Palacios, J.M; Cilleruelo, C.; Ibarra, J.V. 1995. Kinetic behavior and reactivity of zinc ferrites for hot coal gas desulfurization. Ind. Eng. Chem. Res. 30, 6171-6178.
    106. Tamhankar, S.S.; Hasatani, M.; Wen, C.Y. 1981. Kinetic studies on the reactions involved in the hot gas desulfurization. Chem. Eng. Sci. 36, 1181-1191.
    107. Cantrell, K.J.; Yabusaki, S.B.; Engelhard, M.H.; Mitroshkov, A.V.; Thornton, E.C. 2003. Oxidation of H2S by iron oxides in unsaturated conditions. Environ. Sci. Technol. 37, 2192-2199.
    108. Jones, A.F.; Lecount, S.; Smart, R.S.; White, T. J. 1992. Composition and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies. Appl. Surf. Sci. 55, 65-85.
    109. Pratt, A.R.; Muir, I.J.; Nebitt, H.W. 1994. X-ray photoelectron and Auger electron studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta. 58, 827-841.
    110. Pratt, A.R.; Nesbitt, H.W.; Mycroft, J.R. 1996. The increased reactivity of pyrrhotite and magnetite phases in sulphide mine tailings. J. Geochem. Explo. 56,1-11.
    111. Thomas, J.E.; Skinner, W.M.; Smart, R.T. 2003. A comparison of the dissolution behavior of troilite with other iron (II) sulfides; implications of structure. Geochim. Cosmochim. Acta. 67, 831-843.
    112.Lin, C.K.; Du, C.L.; Chen, G.S.; Louh, R.F.; Lee, P.Y.; Lin, H.M. 2004. Structural investigation of iron sulfides synthesized by mechanochemical reaction. Mater. Sci. Eng. A. 375, 834-838.
    113. Joyner, R.W.; Stockenhuber, M.; Tkachenko, O.P. 2003. Synthesis, structure and reactivity of iron-sulfur species in zeolites. Catal. Lett. 85, 193-197.
    114. Abbasian, J.; Slimane, R.B. 1998. Ind. Eng. Chem. Res. 37, 2775-2782.
    115. Li, X.; Edirisinghe, M.J. 2004. Evolution of the ceramic structure during thermal degradation of a Si-Al-C-O precursor. Chem. Mater. 16, 1111-1119.
    116. Fitzgerald, J.J.; Hamza, A.I.; Dec, S.F.; Bronnimann, C.E. 1996. Solid-state 27Al and 29Si NMR and 1H CRAMPS studies of the thermal transformations of the 2:1 phyllosilicate pyrophylite. J. Phy. Chem. 100, 17351-17360.
    117. Kim, J.Y.; Kumta, P.N.; Phillips, B.L.; Risbud, S.H. 2000. A versatile chemical strategy for ultrafine AlN and Al-O-N powders. J. Phy. Chem. B. 104, 7895-7907.
    118. Wilson, M.J. Clay mineralogy: Spectroscopic and chemical determinative methods. Chapman and Hill: New York 1994.
    119. He, H.P.; Guo, J.G.; Zhu, J.X.; Hu, C. 2003. 29Si and 27Al MAS NMR study of the thermal transformations of kaolinite from north China. Clay Miner. 38, 551-559.
    120. Zina, M.S.; Ghorbel, A. 2004. Preparation and characterization of bimetallic PdMo/Y-zeolite: catalytic properties in methane combustion. Solid State Sci. 6, 973-980.
    121. Benharrats, N.; Belbachir, M.; Legrand, A.P.; D’espinose, J.B.; Caillerie, D.E. 2003. 29Si and 27Al MAS NMR study of the zeolitization of kaolin by alkali leaching. Clay Miner. 38, 49-61.
    122. He, H.P.; Guo, J.G.; Zhu, J.X.; Yuan, P.; Hu, C. 2004. 29Si and 27Al MAS NMR spectra of mullites from different kaolinites. Spectrochim. Acta A. 60, 1061-1064.

    下載圖示 校內:2007-03-22公開
    校外:2008-03-22公開
    QR CODE